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ABSTRACT 

Methods are presented which can be used to analyze a sequential digital 

process and synthesize a process which performs the same operations but in less 

time by allowing concurrent execution of operations where possible. In the 

model used, concurrent execution of operations is controlled by branch 

operations which initiate concurrent paths of execution and by rendezvous 

operations which combine concurrent paths of execution after completion. Two 

types of errors which may occur in concurrent processes but not in sequential 

processes are distinguished. The first, called sequencing errors, cause the 

computed results to depend on the magnitude of the delays in the process 

operations and are due to operations being initiated before all of their data 

values are available. The second type of errors arc called implementation errors 

and are caused by attempting to combine non-concurrent paths of execution 

with a rendezvous operation and by attempting to initiate an operation that is 

already being executed. The problem of delecting and correcting these errors is 

eliminated by insuring that the synthesized concurrent process is free of 

sequencing and implementation errors. A precedence relation is determined for 

the operations of the process and is used to insure that no operation is executed 

until all operations whose execution must precede it arc completed thereby 

preventing sequencing errors. Dominance relations and directed cut sets, which 

specify the relationship between the execution of the operations, are used to 

avoid implementation errors. 
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CONTROL OF CONCURRENT OPERATIONS IN ASYNCHRONOUS 

DIGITAL PROCESSES 

I. INTRODUCTION 

Despite the tremendous increases in digital system operating speeds over the past twenty years, many applications 

require, or can profitably utilize, even faster systems. Many problems, such as numerical weather prediction, have 

restrictions on the time by which results must be produced if those results are to be useful. A prediction of 95% 

probability of rain for yesterday has very little value. Also, if digital systems can be made faster, without a 

corresponding increase in price, the cost per calculation or problem can be reduced assuming there is enough demand 

to utilize the increased capability. Although increased operating speed can be achieved by developing faster hardware 

elements such as logic gates and memories, there is a limit to the component operating speeds with the state of 

technology available at any given time. There is also a limit to the speed with which arithmetric operations such as 

addition and multiplication can be performed with a given set of logic elements.' •2' 3 This report will be concerned 

with increasing the operating speed of processes by changes in the organizational structure, specifically, changes that 

will allow operations to be executed concurrently. The goal of the research repotted here was to develop methods 

for analyzing a process in which all operations are executed sequentially and to then synthesize an error-free process 

that executes the same operations as the original process, but in less time, by executing operations concurrently 

when possible. 

The processes discussed will be represented by flow charts like the example in Figure 1, which represents a set of 

operations to be executed either by a programmed computer or by a special purpose digital system. The How charts 

are composed of three types of operations: processing operations, denoted by rectangular boxes, that modify the 

data in storage elements (e.g., add, gate, v/rite) \ decision operations, denoted by diamond shaped boxes, that 

monitor the data in storage elements and determine which following operations are to be performed (e.g., compare); 

and control operations, denoted by circles, that, together with the directed lines connecting the operations, 

determine the order in which operations are to be performed. The processing and decision operations are numbered 

in the lower right corner for reference. Storage elements and data paths are not shown explicitly by the flow chart 

but are implied by the operations. Each processing operation has an input terminal or connection called the 

initiation terminal and an output terminal or connection called the completion terminal- A signal applied to the 

initiation terminal of a processing op .-ration is called an initiation signal and causes that operation to be executed. 

When the execution of the operation is completed it generates a signal at its completion terminal called the 

completion signal. If the completion terminal of one operation is connected to the initiation terminal of a second 

operation, the second operation will begin execution as soon as the execution of the first operation is completed. 
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FIGURE  I.    EXAMPLE OF A PROCESS 
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The decision operations have a single initiation terminal and two or more completion terminals. When a decision 

operation is executed it generates a completion signal on one of its completion terminals, the particular terminal 

depending on the decision outcome, The branch operation has one initiation terminal and two or more completion 

terminals. When it is executed it generates a signal on each of its outputs and this can be used to initiate concurrent 
operations. 

The merge operation has two or more initiation terminals and a single completion terminal. When it receives an 

initiation signal on any one of its inputs it generates the completion signal. The rendezvous operation also has two or 

more initiation terminals and a single completion terminal but it generates a completion signal only after it has 

received an initiation signal on each of its inputs. The merge is used to combine the completion signals from 

operations where only one can be executed at a time while the rendezvous is used to combine the completion signals 

Tom operations thai are executed concurrently. The first operation in a process is *\my* * process termination or 

PT operatton. Execution of a PI operation begins the execution of the corresponding process and the execution of 
the process continues until the PT operation for the process is initialed. 

The processing and decision operations are not restricted to simple operations but may represent long calculations 

or subroutine calls that are grouped together as one operation for convenience. A How chart with no branch and 

rendezvous operations is called the How char, of a sequential process or a sequential floW char, while a How chart 

wtth branch and rendezvous operations is a How chart of a concurrent process or a concurrent flow char,. The 

execution ume ol each operation is assumed to be variable and not known although average execution times may 

often be estimated. We will assume that the execution times of the control operations are short compared to those 

lor the processing and decision operations and can therefore he ignored. Since each operation produces a completion 

Signal that is used to initiate following operations, the control of the process described does not depend on the 

execution time of the operations, and the systems are asynchronous. 

As was mentioned previously the How charts may represent a set of operations to be executed by a program in a 

digital computer. In that case the branch operation corresponds to the FORK instruction and the rendezvous 

operation corresponds to WAIT or JOIN instructions that have been proposed by other authors <■ *• * These 

instructions allow more flexibility in controlling concurrent operations that the DO TOGtTHHR or PARALLEL 

FOR - \ winch specify groups of operations to be executed concurrently. Figure 2 shows an example proposed by 

Fisher   ol a concurrent process that cannot be specified by DO TOGETHER statements. 

The How charts can also represent a process to be executed by a special purpose digital system. Such a system can 

be constructed conveniently from the set of macromodules that are currently being developed in the Computer 
Systems Laboratory a. Washington University-- ", .2, ,.,. The cx:impk,s ,„■ sys(cins .„ ^ ^^ ^.^ 

will be given in terms of macromodule operations. 

Systems with concurrent operations are subject to two types of errors thai do not occur in sequential systems 

The first type, called a sequencing errnr>\ occurs when some computed value depends on the relative timing 

between concurrent operations. A simple example of this would be the case where concurrent operations added a 

number to, and tested the same register. There would be no way to predict whether the register contained the 

original value, the sum, or something in between when the test was made. Such an error can be detected but cannot 

be corrected without determining whether the addition sl.ouiJ be performed before or after the register test The 

second type of error, which is called an implementation <nor". ,s caused by incorrect use of branch and rendezvous 

operations. An example of this type of error is shown in Figure 3 where the rendezvous operation will receive only 



FIGURE 2.    EXAMPLE OF A CONCURRENT PROCESS THAT 

CANNOT BE SPECIFIED BY DO TOGETHER STATEMENTS 
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FIGURE   3.      INCORRKCT   USE   OF   RENDEZVOUS 
OPERATION 
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oiii.' input signal In ihis example the PT operation will never be initiated. Several other types of implementation 

errors are possible and these will be discussed later. 

Several authors ' ''■ '7. ' ^ have discussed the problem of assigning computers 01 processors to the operations 

of a process. Estrin and Turn, and Martin and lislrin have discussed the case of the reslruclurable computer where 

the "cost" of executing a particular operation depends on which processor executes it. They describe iterative 

methods by which trial assignments of each operation to a processor are made and the total computation cost 

determined. The assignments are then perturbed and the new cost compared with the preceding one to determine 

whether an improvement has been made. Schwartz19 has discussed a heuristic method foi assigning processors to a 

set of operations. A different model of a process is used by Karp and Miller20 and by Reiter21 in which the 

connections between operations represent queues of data. An operation may be executed whenever eaeli of its 

inputs contains a data value and upon completion of the operation a data value is placed on some of the output 

lines. Data values are allowed to queue between the operations and Karp and Miller, and Reitet have investigated 

bounds on the length of these queues and the necessary conditions for a process to terminate, 

Detection of errors in concurrent systems has been discussed in several papers14' 22' ^ A summary of methods 
lv" detecting implementation errors is given by Keller and Wann2'. These include topological analysis, simulation, 

and the state transition method which is a systematic method of testing each possible stale of control signals in a 

process. Van Horn s has considered the problems of insuring that a concurrent process executed on a digital 

computer will always produce the same results if started from the same initial state, and he discusses a number of 

restrictions which must be satisfied. These restrictions do not eliminate errors that may occur in the process bin 

insure that the results will be reproducible so that debugging will be facilitated. 

In contrast to the preceding work on detecting errors or insuring consistent performance of processes with 

errors, the work reported here is concerned with synthesizing concurrent processes that are free of errors. The work 

oi Bernstein 6 and Fisher9 in determining precedence relations, which are used to specify the ordering of operation 

executions required to prevent sequencing errors, is reviewed and several other relations useful in the synthesis of 

concurrent processes are developed in Chapter 2. These relations are used in the synthesis of error-free concurrent 

processes for loop-free sequential processes and for sequential processes containing loops, in Chapters 3 and -4 

respectively. Chapter 5 summarizes the results, lists some deficiencies in the approach, and makes suggestions for 

further work. 
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2   CONNECTIVITY. PRECEDENCE, AND DOMINANCE RELATIONS 

This section discusses the use of binary relations, which may be represented by ordered pairs, directed graphs, or 

boolean matrices to describe several relations between the operations of a process. The connectivity relation 

describes the order of execution of operations In a sequential process, the precedence relation describes the order of 

execution thai must be maintained to prevent sequencing errors, and the dominance relation describes the 

relationship between the execution of operations. 

2.1 BINARY RELATIONS 

A binary relation on a set of elements. X = {x,. x2 ..xn } . can be specified by a set of ordered pairs of elements 

of X. For example, the relation of "less than" on the set of integers from I to 4 can be specified by the following set 

of pairs of numbers: 

{(l.2),(l,3)(;,4),(2,3),(2,4),(3,4)) 

1 
I 
I 

I 

I 
I 

I 

I 
This set contains all pairs, (x.,x.). of elements of X such that x. is less than x.. For a set with n elements there are n2 

I possible ordered pairs of elements and each may be included in the relation or not. Therefore, there are 2"|2) 

possible binary relations on a set of n elements. 

| There are several important properties that binary relations may possess. The first of these is that the relation 

may be transitive. That is. if (X.A.) and (x|,xk) are members of the relation, (x..xk) must be a member also. The 

relation "less than" in the previous example is a transitive relation. In this example the relation can be specified by 

I the ordered pairs (1. 2), (2, 3). and (3, 4) and the fact that the relation is transitive, since the other members of the 

relation can be derived from this. 

A second properly of binary relations is that they may be symmetric. That is. if (x.,x.) belongs to the relation 

then (XjAj) must belong to the r< lation also. A relation is antisymmetric if (x..x.) being a member of the relation 

implies IhaMx,. x.)cannot be a member of the relation. A third property of binary relations is that they may be 

reflexive or antireflexive, A relation is reflexive If for all xj. (x.,x,) is a member of the relation and antircjlexive if for 

all ^.(XJJX,) is not in the relation. 

The members of a relation are topohgically ordered if they are numbered so that if (x.,x.) is a member of the 

relation then i < j. A relation can otdy be topologically ordered if it is antisymmetric and antireflexive. 

In addition to being represented by pairs of elements, a binary relation can also be represented by a directed 

graph or by a square boolean matrix, in the directed graph representation, each element of the set. X. is represented 

by a node or vertex of a graph and each member. (xj,x,). of the relation is represented by an arc from node x. to 

node x.. In the boolean matrix representation, each element of the set is represented by a row and column of the 

matrix and each member of the relation, (X.A.) is specified by a Tin lhei,j position of the matrix. If (x.,x.) is not a 

member of the relation then the i,j position of the matrix is a '()'. If the row and column numbers of a matrix 

represent a topologlcal order for a relation the matrix will be superdiagon.il. The directed graph and boolean matrix 

representations of the "less than" relation for integers I to 4 are given in Figure 4. 



-8- 
, 

Each of the three representations of binary relations discussed has certain advantages. The directed graph is 

easiest lor humans to visualize and follow but cannot be used directly foi digital computer calculations; the boolean 

matrix representation is convenient for computei calculations using logical operations; the ordered pair 

representation can be manipulated using list processing operations 27' 28' ,9. If the relation contains many 

members, the boolean matrix representation will usually require less computer storage than the ordered pair 

representation while if the relation has only a few members the converse is usually true. In the remainder of this 

report, the examples will be illustrated by directed graphs and methods for calculating properties of relations will be 

discussed in terms of boolean matrices. 

The operations of a process will be represented by the nodes of directed graphs and we will use "operation" and 

"node" interchangeably. The first nude of a graph will always represent the PI operation and the last node will 

always represent the PT operation for a process. 

2.2 OPERATIONS ON BINARY RELATIONS 

2.2.1 Transitive Closure 

The first operation to be discussed is the determination of "he transitive closure of a transitive binary relation. By 

transitive closure is meant all members of the relation, including those implied by the given members but not 

specified explicitly. A relation that is equal to its transitive closure w;ll be called a complete relation and the 

corresponding boolean matrix and directed graph will be called a complclc matrix and complete graph, respectively. 

The members implied by two or more given members can be found by taking powers of the boolean matrix, A. 

which represents the relation as shown by Prosser0. The expression for the i,| term of the square ol the matrix is 

given by the boolean expression 

N 
(A2).. =   V     A, A,. 

i)        t—i ik     kj 

k= I 

Thus, the i,i term of the squared matrix is equal to T if and only If there is some k such that A.. = A.   = I. Then 
ik kj 

every T in A2 represents a member of the relation which is implied by two other members. Similarly, members of 

the relation which are implied by a chain of n members will be represented by a T in the nth power of the matrix. 

Every member of the relation must be implied by a chain of members of length N 1 or less where N is the number 

of elements in the set, X. Therefore, the complete set of members of the relation, including all implied relations, can 

be found by adding together (modulo 2) all of the powers of A from I to N I. The computation required can be 

reduced by noting that      . 

(A2+A)2 - A4+A-,+A2 and in general that 

■»" 

{...((A2+A)2+A)2..,^= ^      A' 

n   times 
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Thus, only F l()g2 (N   I) "1 boolean multiplications are required to find all implied members of the relation where 

Fa "1 indicates the smallest integei greater than or equal to a. 

A more efficient method has been described by Warshall3 ' and he gives a proof that his method is equivalent to 

calculating the powers of A. The matrix is scanned one column at a time and when a T is found in position i,j, row i 

is replaced by the sum (modulo 2) of row i and row j as shown below: 

forj= 1,2 ..   N 

lor i = 1, 2,. . . N 

I—if A. , «T 
i. J 

r-tor k = 1, 2,. . . N 

A. . = A. . + A. . 
■. J        i. k j, k 

This algorithm operates only on rows of the matrix and can be conveniently implemented in a digital computer if 

the matrix is stored by rows. 

If the A matrix is supcrdiagonal. the following algorithm can be used: 

r fori-N,N- I ... I 

-fi,rj = N,N   I . . .i+l 

r—"ifA. . =■ 

t—fork = i,i+l . . . N 

A. . = A. . + A.  , 
i. k i, k       j, k 
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2.2.2 The Cover Of A Relation 

By the cover of a transitive relation is meant the minimum set of members of the relation that can be used to 

specify it. This is formed by deleting all members of the relation that are implied by two or more other members A 

relanon that is equaJ to its cover will be called a basic relation and the corresponding boolean matrix and directed 

graph w.11 be called a basic matrix and basic graph, respectively. The members of the relation that are implied by 

other members can be found by taking powers of A as described in Section 2.2.1 or by calculating the transitive 

closure o. the sum of the second and third powers of A. The second power of A contains ail members of the relation 

th    «re tmplied by two members and the third power of A contains all members of the relation that are implied by 

imLT   li    ■,ranSi,1Ve C,0SUfe ^ "^ SUm 0f ^ ^ ;'nd ,,lird P— — "" "-*- "- ar 
z Lg an ft::rr r ^ thr;e members ,,r ai1 members ,,r the reiation m^ ^ ^ - - ™^ .Xlctmg all o, these implied members from the original A matrix will leave the basic relation or the cover lor the 

As with the calculation of the transitive closure, a simpler method- can be used If the matrix is superdiagonal 

-::r:;:::rbd,,w-can b^ ^ ^to a——- - - - "■ - ~ 

for i = 1, 2 . . . N    1 

t'orj "1+1,1+2 .. .N 

[—  if A.  ,= 
■ . J 

•fork»1,1+1 ... N 

Ai,k"\k&Ajik 

2.2.3 Topological Ordering 

grillt.«: "'e *n'c"'s "f""' u"dc,' bi"a'y re,"tton ^be —""^'-"»"• « 

M.c„ row „I th. «mplra mm .ho, „m be „„ked In „the, „rder. 
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2.3 CONNECTIVITY AND REACHABILITY RELATIONS 

A connectivity relation is a binary relation thai describes the order in which a set of operations that comprise a 

sequential process are to be performed. That is, if operation J can be performed directly following operation I then 

(I.J) is a member of the relation and there is an arc from node I to node J in the corresponding directed graph. The 

connectivity relation is not a transitive relation since J directly following I., and K directly following J does not 

imply that K directly follows I. The directed graph and boolean matrix that represent the connectivity relation will 

be called the connectivity graph and connectivity matrix, respectively. If the order of execution of the operations in 

the process is specified by a flow chart, the connectivity graph will be isomorphic to he How chart and can be 

determined directly from it. 

The reachability relation is the transitive closure of the connectivity relation. If the l,J term of the reachability 

matrix, R, is T then operation J may follow operation I but not necessarily directly. If J may follow I then I 

reaches i. Ramamoorthy34, J5 has shown several uses of the connectivity and reachability relations. One of these, 

which will be of use in the following discussion, is a method to find the feedback arcs of a connectivity graph, or the 

members of the relation which must be deleted to make the relation antisymmetric and antireflexive (loop-free). 

The feedback arcs of a connectivity graph are not necessarily unique as the examples in Figure 5 show. In Figure 

5A the arc from node 6 to node 3 appears to be the feedback arc while in Figure 5B the feedback arc appears to be 

the one from node 4 to node 5. Actually the graph in Figure 5B is isomorphic to the one in Figure 5A and is 

redrawn in Figure 5C to show the symmetry. Either the arc from node 6 to node 3 or the arc from node 4 to node S 

can be considered the feedback arc for this graph. When either arc is deleted the graph becomes loop-free. 

The feedback arcs of a connectivity graph are defined as the minimum set of arcs (not necessarily unique) which 

can be removed to eliminate all loops of the graph, and still allow all of the nodes to reach the termination node34. 

The restriction requiring all nodes to be able to reach the termination node after deletion of the feedback arcs is 

included to prevent selection of the arc from node 2 to node 3 in Figure 6 as the feedback arc. Alternatively we 

could require that all nodes be reachable from the initiation node after deletion of the feedback arcs, but the 

requirement chosen is more convenient for alter work. Both requirements can be satisfied for most connectivity 

graphs but not for the one shown in Figure 6. Either the arc from node 3 to node 4 or the arc from node 4 to node 2 

can be selected as the feedback arc and when this is deleted either node 4 cannot reach the termination node or the 
initiation node cannot reach node 4. 

A method for determining the feedback arcs is to calculate the maximally strongly connected subgraphs (M.S.C. 

subgraphs) as suggested by Ramamoorthy35. The M.S.C. subgraphs are the maximum sets of nodes such that each 

node in the set can reach any other node in the set. if a graph has no M.S.C. subgraphs it has no feedback arcs. The 

M.S.C. subgraphs are clearly disjoint since by definition if two M.S.C. subgraphs have a node in common they must 

have all nodes in either M.S.C. subgraph in common. The M.S.C. subgraphs are found from M, which is formed by 

'and'ing the rejchability matrix and its transpose together. The l,J element of M is a T if and only if 1 can reach and 

be reached b* J. The M.S.C. subgraphs of the system correspond to the distinct rows of M and are comprised of the 

nodes represented by the row positions containing a ' I'. A node J, is an entrance node of an M.S.C. subgraph If it is a 

member of the subgraph and there is any node, I, which is not a member of the subgraph such that €(1,1) = 'I' where 

C is the connectivity matrix. Similarly, a node, J, is an exit node if there is any node, K, which is not a member of 
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FIGURE 5.    A PROCESS WITH NO UNIQUE FEEDBACK ARC 
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FIGURE 6.    A GRAPH IN WIIK11 AIL  NODES CANNOT BE REACHED FROM Tl 

INITIATION NODE AFTER DELETION OF Till   FEEDBACK AK( 

FIGURE 7.    A GRAPH CONTAINING A STRONGLY CONNECTED SUBGRAPH 

WITH 2 EXIT NODES 
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the subgraph such that C"(J,K) = '1'. Ramamoorthy Identifies the feedback arcs as the arcs from nodes within each 

IM.S.C. subgraph to the entrance node of the M.S.C. subgraph, but since we require each operation to be able to 

reach the termination node after the feedback arcs are deleted, we shall identify the feedback arcs as the arcs from 

exit nodes of a M.S.C. subgraph to a node within the M.S.C". subgraph. After the feedback arcs are determined, they 

can be deleted from the graph and the M.S.C. subgraphs of the remaining graph calculated to test for additional 

feedback arcs. If there is more than one exit node from a M.S.C. subgraph then the arcs from all of the exit nodes 

may not be feedback arcs as illustrated in Figure 7. The M.S.C. subgraph is composed of nodes 2, 3, and 4 and both 

g nodes 3 and 4 are exit nodes. To obtain the fewest number of feedback arcs, the exit nodes can be selected one at a 

time, their output arcs deleted, and the feedback arcs in the remaining graph determined. The minimum set of arcs 

* found is selected as the set of feedback arcs, in the example of Figure 7, selecting node 3 first and then node 4 gives 

■ two feedback arcs while selecting node 4 first gives only one feedback arc. Therefoie. the arc from node 4 to node 2 
is the feedback arc. 

I 

1 
I 
I 
I 

I 
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I 
I 
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2.4 PRECEDENCE RELATIONS 

A precedence relation on a set of operations specifies which operations must precede other operations to insure 

correct performance of the process. A precedence relation is transitive, antireflexive, and antisymmetric. The 

directed graph and boolean matrix that represent the basic set of members of the precedence relation will be called 

the basic precedence graph and bask precedence matrix, respectively, while the directed graph and boolean matrix 

representing the complete set of members of the precedence relation will be called the eomplete precedence graph 

and complete precedence matrix, respectively. Operations which must be completed before a given operation will be 

called the predecessors of the operation. The predecessors of operation I are all operations. J, with a T in the Jth 

| row of the Ith column of the complete precedence matrix. The direct predecessors of I are the predecessors of I that 

arc not predecessors of any other predecessor of I. These correspond to members of the basic precedence relation 

and are all operations with a T in their row of the Ith column of the basic precedence matrix. The indirect 

I predecessors are the predecessors of I which are not direct predecessors of I. Most of the following work will be 

concerned with the basic precedence relation since if all of its members arc satisfied all of the members of the 

complete precedence relation are satisfied also. 

2.4.1 Precedence Relations Required by Decision Dependence 

An operation may not be executed unless it would also be executed in the sequential process. We do not consider 

the possibility of executing operations before it can be determined that they arc to be executed. Thus, each 

operation may be executed only after the completion of all decisions that can prevent the execution of that 
operation9. 

If a decision, I. can prevent the execution of an operation. .1. there must be some outcome of decision I for which 

operation J may be executed and some outcome of decision I for which operation J cannot be executed. A 

particular outcome of decision I is represented by an arc of the connectivity graph from node I to some other node 

K. These operations may be found from the reachability matrix. The union of the sets of operations that may be 
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A CONNECTIVITY GRAPH 

FIGURE 8 

o 

0 
V 

THE   DECISION   DEPENDENT   PRECEDENCE 

RELATION   FOR   THE   CONNECTIVITY  GRAPH 

OF FIGURE 8 

FIGURE 9. 
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executed lor each decision outcottie minus their intersection gives the sei of operations that can be executed for 

only some of the decision outcomes, or all operations that the decision can prevent from being executed. Thus, the 

operations that must be executed after each decision can be determined by manipulations on the reachability 

matrix. Figures K and 9 show a connectivity grapli and the members of the precedence relation due to decision 

dependence tor this graph. Operations 4, 5,6, and 7 can be reached by one output front decision 2 and operations 3, 

5, (\ and 7 can be reached by the other output from decision operation 2. The union of these two sets minus their 

intersection gives operations 3 and 4 which must follow operation 2. Similarly the sets of operations reached by the 

two outcomes of decision operation 4 are {5, 6} and {()} and their union minus their intersection is just {s}. 

Therefore, operation 5 must follow operation 4 as shown in the decision dependent precedence relation in Figure 9. 

2.4.2 Precedence Relations Required by Data Dependence 

The second class of precedence relations to be examined is due to storage elements whose values are changed by 

the operations ' 6. In the following discussion, register will be used as a general term to refer to any storage 

element whether it is a register, core memory, or other iypv Read will be used to indicate any use of the contents of 

a register and write will reter to any change of the contents of a register. The types of operations considered are 

decision operations which can affect the How of control based on the contents of registers, and processing 

operations which change the contents of a register based on the contents of other registers. It is assumed that the 

actual registers used can be determined by analysis of the operations of the process, which eliminates or restricts the 

possibility of using indirect addressing. This is a serious limitation but one which apparently cannot be avoided. The 

original order between two operations must be maintained if their order of execution determines what value is left in 

some register when they are completed, or if their order of execution can affect the value in a register read by one of 

the operations. Consider two operations, I and .1, with I preceding J. Clearly, if they both write the same register 

then their order of execution cannot be interchanged since this would leave the value written by operation I in the 

register instead of that written by operation J. Therefore, if two operations write the same register, their order may 
not be interchanged. 

If a register written by operation I is read by operation J, then the operations cannot be interchanged since, if 

they were interchanged the value read by operation J would not be the one written by operation I as in the original 

order of execution. Similarly, if operation J writes a register that is read by register I, the operations cannot be 

interchanged. Let R(X) represent the set of registers read by operation X, W(X) represent the set of registers written 

by operation X, and 0 be the null set. Then if the following three conditions are satisfied, operations I and J can be 
executed in either order or concurrently. 

1. W(i)nW(J) = 0 

2. W(l)nR(J) = 0 

3. R(l)nW(.l) = 0 

Conversely, if any of the three relations is not true, the original order of the operations must be maintained. 

The preceding discussion assumes there       no operations between I and J. If there are other operations between 

them, J may be required to follow I due to implied members of the precedence relation. It is interesting to note that 
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if the original ordering was operation 1 followed by operation J. then only the second relation above actually forces 

the operations to be sequential (e.g.. the case where operation J requires results computed by operation I). In the 

first and third relations the ordering is constrained because both operations use the same register. If a different 

register were provided for operation J to write into, then the operations could be executed concurrently. This 

possibility will not be investigated further in this analysis since it would require reassignmenl of the registers and 

modification of the operations specified originally. 

A sequence of operations that is called as a subroutine can be considered as a single operation that is substituted 

for the call. The registers read and written would be the union of all those read and written by the operations of the 

sequence. Then the operation that was substituted for the call can be compared with the oilier operations to 

determine the required members of the precedence relation. In some cases it may be possible for two sequences to 

be done in either order but not concurrently. These are called commutative sequences by Bernstein26. This occurs 

when there is a register that both sequences write before reading and whose contents are not required by other 

operations outside of the sequences. In this case both sequences are using it as a scratch register and its contents are 

not required by other operations outside of the sequences. Detection of this situation requires recording not oidy 

which registers are read and written but also the order in which they are read and written and determining whether 

the registers are read by any following operations26. Figure 1ÜA shows an example of possible concurrent operation 

that will not be detected by the method described above. In this example the sequences 2 to 4 and 5 to 7 can be 

executed in cither order but not concurrently. However, if sequence 5 to 7 Is executed first, then operation 8 can be 

executed concurrently with sequence 2 to 4, while executing sequence 2 to 4 first allows no concurrent operation. If 

a new register, D, is substituted for register A in operations 5 to 7 then the two sequences can be executed 

concurrently as shown in Figure 10B. In general, sequences that can be executed in either order but not 

concurrently, because of common use of a register for temporary storage, can be executed concurrently if additional 

registers are provided. 

2.4.3 Combination of Precedence Relations 

Combining the precedence relation due to decision dependence with that due to data dependence gives the 

precedence relation for the operations of a process. In addition we require every operation to follow the process 

initiation operation and to precede the process termination operation. In general the combination of these 

precedence relations will not be the basic or the complete precedence relation but the techniques discussed in 

Section 2.2 can be used to find the basic and complete precedence relations. 

Another method, which calculates the basic precedence relation and complete precedence relation directly, is an 

algorithm due to Bingham, Fisher, and Semon9, 36' •17 which is shown in Figure I I. Initially T is the matrix of 

precedenGe relations due to the decision operations and S is the union of the connectivity matrix and T. The 

algorithm converts these respectively into the complete and basic precedence matrices. The minimum number of 

comparisons of registers read and written are made by using relations already established. For instance, if there are 

three operations, where 2 must follow 1 and 3 must follow 2, there is no need to compare the registers read and 

written by I and 3 since there is already an implied precedence relation between them. 
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FIGURE II.    ALGORITHM TO CALCULATE THE PRECEDENCE RELATION 
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2.4.4 Limitations in Determining the Precedence Relation 

Phere are several types of possible concurrent operation which arc not recognized hy the methods described 

above. A degenerate case can occur when a particular outcome of a decision can never be taken. An example is 

show n in Figure 11 where the "YES" outcome from decision 4 can never be taken. Since only the "NO" outcome 

liom decision 4 can be taken, decision 4 and operation 5 could be deleted from the process, allowing operations 3 

and 6 to be executed concurrently. In some cases it might be possible to delect decision outcomes that cannot occur 

but their occurrence is probably rare, and Bernstein26 has shown that it is impossible to detect all such cases. 

Another situation with possible concurrent operations which will not be recognized by the methods described is 

shown in figure 13, where operations 3 and 4 are identical. In tins case the shift operation is executed for either 

output of the decision but the techniques used for analysis will make it follow the decision. The concurrent 

execution of the shift and decision operations would be recognized if the shift operation was placed before the 

decision and the repetition of the operation would be eliminated. To detect this possibility would require comparing 

the operations executed for each outcome of a decision to determine whether the same operation is executed foi 
each decision outcome"*. 

A more serious limitation, which was mentioned earlier, is that some operations cannot be executed concurrently 

because they require use of the same register or storage element although there is nothing inherent in the data or 

operations to require them to be executed sequentially. These situations can be recognized but require changes in 

the operations specified and may require additional processing operations and registers to allow concurrent 

execution of operations. Another possibility would be to remove the member of the precedence relation between 

them but to interlock their actual execution1 ' so that only one of them could be executed at a time. This would 

allow the first one whose predecessors were completed to be executed first but would prevent them from being 

executed concurrently. Another situation where operations may be executed in either order but not concurrently 

occurs when several operations test and alter common status information as described by Dijkstia"'. Again, it tins 

sharing of data can be recognized, the operations may be interlocked so that they may be executed in any order but 

only one can be executed at a time. 

finally, the operations of a process may be required to be executed sequentially when there is an alternate set of 

perations that will allow some concurrent execution. The value of the polynomial Xs + X1 + X can be calculated 

by either of the methods shown in figure 14, where the value computed by each operation of the How chart is 

shown to the left of the operation, fach method requires lour multiplications and two additions but several teps 

can be performed concurrently using the second method. This probably represents the most serious problem in 

allowing concurrent execution of operations although some work lias been done on constructing algorithms for 

particular problems which allow concurrent execution of operations40'46. 

2.5 DOMINANCE RELATIONS 

The dominance relation provides information on the relationship between the execution of the operations In a 

process, for example, if it is known that operation 5 in the example shown in Figure 15 is executed for a particular 

initiation of the process, operations I, 2. and 7 must be executed also, operation o cannot he executed, and either 

o 
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FIGURE 13,    EXAMPLE OF A SEQUENTIAL PROCESS WITH 

THE SAME OPERATION EXECUTED FOR EACH OUTCOME OF THE DECISION 
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,,,,,,, i I |vi,  i m.M IM lÄWUtad In thlicaiewe »ay thai operations I, a,and 7tfow/«fl^ operation 5 

,„„1 ihn ufWttifcMl "> H mk*Mute to optrationa I, 2. and 7. Operations 5 and 6 arc called exclusive. Tins 

Inform«!!»* i in N wpwwitt«! b) a binary relation, called ihc dominance relation30, and by the reachability 

m.iiiis I wo opeuiionv | .uul I. cannoi Imili lie execuied on the same initiation of the process unless either the I, J 

01 thl I, I letin ol ihc leacliahilily matiix is T. If neither leim is M' llien 1 cannoi be executed after J and .1 cannot 

be ex»6ttt«d »ftei  I and, therefore, they cannoi both be executed for a single initiation of the process. Thus, the 

reachability matrix ipeclflei whethei the execution of two operations is exclusive or not. 

To determine, foi each operation I, which other operations must be executed when I is executed the dominance 

relation is constructed. The boolean matrix used to represent the dominance relation is called the dominance matrix. 

I), and has a T in the l,J position if and only if I dominates J or the fact that operati m .1 is executed implies that 

operation I musl be executed. Thus, the five possibilities for the execution of two operations. 1 and J, can be 

determined as follows where R is the reachability matrix. 

D(l.J) D(J,1) 

r whenever either operation is executed both 

of them are executed. 

T '0' whenever J is executed 1 musl be executed 

but when 1 is executed J may or may not be 

executed. 

'0' '1' whenever 1 is executed J must be executed 

but when J is executed I may or may not be 

executed. 

If R(1,J) ■ R(J,I) = '0' then the execution of 

one implies that the other is not executed. 

If R(l,.l) or R(J,I) is T then the execution 

of one gives no information about the other. 

The dominance matrix, D, for a graph with N elements is determined as follows: 

1. Set  D to all '0's 

2. Set  I  to 0. 

3. Set  I  to I  +   I   and  find the reachability matrix 

of the connectivity matrix with row and column 

1 set to '0'. 
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4, If either R(I,J) or R'J.N) is 'O' set 1)(I,J) to 

•r J = i, : . . . N, 

5. If I # N go to step 3, 

Steps l and 2 initialize the D matrix und a counter. In step 3 the reachability matrix, with the Uli operation deleted, 

is found, If any operation J. cannot be reached from the initiation operation then operation I must be executed 

every time thai operation J is executed since every path from the initiation operation to operation J passes through 

operation I. Similarly, if any operation. J. cannot reach the termination operation then operation 1 must be executed 

every time operation .1 is. Step 4 sets the appropriate entry of 1) to a T when an operation cannot be reach d from 

the initiation operation or cannot reach the termination operation. Step 5 tests for completion and returns to ätep 3 

If steps 3 and 4 have not been earned out lor all values of I. Figure 16 shows the dominance matrix for the example 

of Figure 15. 

2.6 CONTROL GRAPHS 

In some cases, where only the nodes on the paths through the connectivity graph are of interest, and not the 

order of the nodes, a more compact representation called the control graph will be used, which represents all paths 

of the connectivity graph in a more compact form. The control graph is formed from the connectivity graph by 

combining two nodes if an arc between them is the only extant are from one of the nodes and the only incident arc 

to the other node. Also if an arc is extant from a node with more than one extant aic and incident to a node with 

more than one incident arc it is split into two arcs and a new node inserted between them. Figure 17 shows an 

example of a connectivity graph and the corresponding control graph Each node in the connectivity graph can he 

assigned to a node in the control graph, however, node d of the control graph does not correspond to any node ol 

the connectivity graph. Node d of the control graph represents a path which cannot be specified by any single node 

in the connectivity graph. If the ratio of decision and merge operations is low the control graph will he much smaller 

than the connectivity graph. The dominance relation for the operations of a system can he determined from the 

control graph, usually with less effort t an using the connectivity graph, since the control graph will usually have 

fewer nodes. 

In Chapters 3 and 4 we will need to find the directed cut sets of the control graph oi of portions of the control 

graph. The directed cut sets of a graph are defined as all sets of nodes such that no member of a set can reach any 

other member of that set and such that removal of all nodes of a set will leave no path from the initiation node to 

the termination node. Figure IS shows the directed cut sets for the example of Figure 17. The nodes in each 

directed cut set represent a set of exclusive possible paths for the control each time the process is initialed. The 

operations corresponding to exactly one of the nodes m each directed cut set will be executed when the process is 

executed. The algorithm shown in Figure 1') gives a method of determining the directed cut sets of an N node graph 

from its control matrix. V is an array of boolean vectors, each vector having a position lor each node oi the control 

graph. R(.l) is an N element boolean vector with a T in position I if node .1 can reach or be reached by node I. 

"NODE" is an array of integers used to record node numbers. 

The algorithm operates by systematically selecting one node of the graph and deleting all nodes that can reach or 

he reached by that node. This process is repeated until 'here are no nodes remaining, in which case all of the nodes 
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CONNECTIVITY GRAPH CONTROL GRAPH 

FIGURE  17. 

A  CONNECTIVITY  GRAPH   AND  THE  CORRESPONDING 

CONTROL   GRAPH 
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FIGURE  IX.    DIRECTED CUT SETS FOR THE 

CONTROL ORAPII OF FIGURE   17 
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I that have been selected to that point form a directed cut sei. Step 2 Initializes V(0) to all Tsand the V array is used 

lo i 'cord which nodes have been deleted. I records the number of nodes that have been deleted. In step 4 the first 

I node that w;is not deleted at the preceding level is found und in step 5 the nodes reaching and reachable from this 

node are deleted. Step h tests to determine if all nodes have been deleted and If they have not, control returns to 

I step 3 to find and delete another node, if the lest at step 6 finds that all nodes have been deleted, step 7 records the 

I selected nodes as a cut set. Step 8 finds a node in the last set of nodes deleted that can be used instead of the 

selected node, and that directly follows it. If one exists, control returns to step 5 to delete the nodes reaching and 

A leached by it. If no such node exists then all cut sets that include NODE (I   I) have been found. If I is not T then I 

■ is decremented and the algorithm goes lo step X to tost for u new node at the preceding level. Ill is T then all cut 

sets have been found. Figure 20 illustrates graphically the process by which the nodes ar ' cted and the cut sets 

I determined. 

I 
I 
I 
I 
I 

2.7 SUMMARY 

Several binary relations and methods for calculating them have been discussed in this chapter. The precedence 

relation specifies any required execution sequence, the dominance relation specifies which operations must be 

executed if a given operation is executed, and the control graph is used lo determine sets of operations which form 

directed cut sets for a process. These relations will be used in the following chapters to aid in the synthesis of 

concurrent processes. 

I 
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3. LOOP FREE PROCESS SYNTHESIS 

Once the relations discussed in Chapter 2 have been determined, the next step is to use this information to 

synthesize an error-five control network in which each operation is initiated ;is soon as all of its predecessors are 

completed. The types of errors considered are discussed in Section 3.1 mid Sections 3,2 and 3.3 consider the 

synthesis ol error-tree processes. Chapter 4 extends this work to include processes which contain loops. 

3.1 TYPES OF ERRORS CONSIDERED 

The two main categories of errors considered are sequencing errors which may be prevented by satisfying the 

precedence relation, and implementation errors. Implementation errors are caused by incorrect use of branch and 

rendezvous operations. The types of implementation errors considered are hazards, where an operation may be 

initiated betöre it has generated the completion signal from a preceding initiation, and incomplete rendezvous, where 

at least one but not all inputs to a rendezvous receive initiation signals. The hazard and re-entered branch errors 

described by Keller2 •' have been combined into the single category of hazard since the re-entered branch error is a 

special case of a hazard. Figures 21 and 22 show examples of processes with errors. The process shown in Figure 22 

will operate correctly the first time it is initiated but one of the rendezvous operations will receive an initiation 

signal on only one input and will be waiting for an initiation signal on the other input. If the other decision outcome 

is taken when the network is initialed the second lime, the rendezvous will have received a previous initiation signal 

on the input reached by operation 2 and will produce its completion signal when it receives the initiation signal from 

the decision. This would allow the operation following the rendezvous to be initiated before one of its predecessors. 

To insure error-free performance of the process in this example, the output from operation 2 must be rende/voused 

with the outputs from decision Operation 3 before operation 4 or 5 is initiated. However, the outputs from decision 

operation 3 must be merged together before they can be rendezvoused with the termination signal from operation 2. 

Figure 23 shows a process with no errors that achieves the desired operations in which a new register. C. has been 

employed. The added operations to set and test G are required so that the outputs from decision 3 can be merged 

together and then split, after rendezvousing with the output from operation 2. 

To simplify the process shown in Figure 23. a new operation, called the wait operation, will be introduced. It has 

one input defined as the signal input and two or more inputs defined as decision inputs, with an output 

corresponding to each of the decision inputs. Whenever an initiation signal is applied to the signal input and one of 

the decision inputs, a completion signal is generated on the corresponding output. A wait operation functions as a 

group of two-input rendezvous operations which share one input signal and which are all cleared whenever an output 

signal is generated by any one of them. Thus, a wait operation can be used to replace all of the operations shown 

enclosed in the dotted box in Figure 23. 

3.2 DECISION FREE PROCESSES 

Before discussing the general technique for determining a control network, consider the example in Figure 24. 

There are eight processing operalr.ms with an assumed precedence relation as shown and no decision operations. 
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FIGURE 23. 
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Each operation can be initiated when ail of ils direct predecessors are completed und the flowchart for an equivalent 

concurrent process is shown in Figure 2?. The following theorem describes a method which can be used to 

synthesize the concurrent process and a proof that the synthesi/ed process will be error free. 

Theorem I: The following three steps specify the synthesis of an error-free process, in which every 

operation is initiated as soon as all of its predecessors are completed, given the precedence 

relation of a decision-free sequential process. 

a. Connect a branch operation to the output of each operation, .1, with one branch 

operation output lor every operation of which operation .1 is a direct 

predecessor. II .1 is the direct predecessor of only one operation then no branch 

operation is required for J. 

b. Connect a rendezvous operation to the input of each operation. I, with an input 

for each operation which is a direct predecessor of I. If I has only one direct 

predecessor then no rendezvous operation is required for J. 

c for each operation, I, connect one output of the branch operation associated 

with each predecessor of I or the predecessor output if it has no associated 

branch operation, to an input of the rendezvous for I or to Ts input if I lias no 

associated rendezvous operation. 

Proof: let   the operations  of the  process be  numbered  sequentially  in  the order of their 

execution in the sequential process, with the PI operation numbered I. Then all 

predecessors of operation K must be assigned numbers that are less than K since 

operation K cannot be required to follow an operation that it does not follow in the 

sequential process. For any operation, K. assume that sometime after the initiation of the 

PI operation each direct predecessor of K generates exactly one completion signal. Then 

each input to the rendezvous operation preceding operation K will receive exactly one 

initiation signal and therefore, the rendezvous will generate one completion signal as soon 

as all the direct predecessors of K are completed. The rendezvous completion signal will 

be used to initiate operation K and so operation K will receive exactly one initiation 

signal. Thus, if all direct predecessors of operation K are executed exactly once there are 

no hazards or incomplete rendezvous in operation K and the rendezvous associated with 

it. Since the PI operation is initiated exactly once and is the only direct predecessor of 

operation 2, operation 2 must be executed exactly once with no hazard or incomplete 

rendezvous errors in it or its associated rendezvous operation. Then by induction, 

operation K for K greater than cr equal to one must be initiated exactly once and have no 

hazard or incomplete rendezvous errors. Thus, all operations are free of implementation 

errors and will be initiated as soon as their predecessors are completed. 
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iluis, for .1 sequential process witlunil decisions, ;i concurrent process can he developed very easily. In fact it is 

quite interesting to observe that If each rendezvous operation is combined with the operation following it and each 

branch operation is combined with the operation it follows, the resulting (low chart is isomorphic to the basic 

precedence graph. 

3.3 PROCESSES CONTAINING DECISIONS 

Figure 2(1 shows a more complicated process which contains a decision. Here the outputs from the direct 

predecessors ot each operation cannot be rendezvoused since this will result in implementation errors. In this 

example, the direct predecessors of operation 5 ate operation 3 and one of the decision outputs. These cannot be 

rendezvoused, however, because the output from operation 3 will occur every time the process is initialed while the 

decision output will not occur every time. In this case operation 3 is executed for some initiations of the process for 

which its successor is not initialed, or operation 3 is not dominated by its successor. Operation 7 represents a 

different case since it is not dominated by its predecessor. There are four possible dominance relations between an 

operation, I. and one of its predecessors, J. and these are listed below where I > .I means thai I dominates J, and I < 

i means tl^ I does not dominate J. 

I      I > J. J  >  I 3.     I  > J, .I  > I 

2.    I > .I. J  >  I 4.    I > J. J  J>  I 

In case one, operation I and its predecessor are both executed under the same conditions so that the output from 

the predecessor. J, can be rendezvoused with other signals and used to initiate operation I. in case two. the 

predecessor is not executed every time operation I is executed so its completion signal must be merged with some 

other signal before it can be used to initiate operation I. In case three, operation I is not executed every time its 

predecessors is. so the completion signal from J must be separated into two exclusive parts, one that is subordinate 

to I and one that occurs only when I is not to be executed. Case four is a combination ofcases two and three. The 

output of the predecessor,!, must first be split into exclusive parts and then the part that is subordinate to I must be 

merged with other signals before being used to initiate I. an ; se four it would be possible to first merge the 

completion signal from J with other signals and then split the merged output, but the former approach is simpler. 

3.3.1 Direct Predecessors With Conditions Equal To Their Successor 

In this case each direct predecessoi is executed if, and only if, the operation is to be executed. This is the same as 

the decision-free case and the completion signals from the direct predecessors can be rendezvoused together to 

generate the initiation signal for tin. operation. In fact, in any case where two or more direct predecessors have the 

same conditions (they dominate each other) their completion signals can be rendezvoused together and the 

rendezvous output considered as the output of a single direct predecessor with the same dominance relation as the 

operations. 
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3.3.2 Direct Predecessors That Do Not Dominute Their Successor 

Next consider the direct predecessors of an operation, I, lliat are subordinate to 1 but do not dominate I. These 

predecessors are never executed unless I is to he executed, but i is executed when some of the predecessors are not 

executed. Therefore, the completion signals cannot be rendezvoused together as in Section 3.3.1 since some of them 

will not be executed every time the others are executed. An example of this situation is shown In Figure 27 where 

operation I has operations 2, 5, 6, 7, and X as direct predecessors. Since exactly one of the operations 2, 5, or 6 will 

be executed when the system is initialed, the completion signals from these operations can he merged together. This 

merged signal will be generated whenever operation I is to be executed and the one direct predecessor 2, 5, or 6 that 

is executed, has been completed. Similarly the completion signals from 6, 7, and 8 can be merged together to 

produce a signal when one of them is completed. These two signals can then be rendezvoused together to generate 

the initiation signal foi operation I as shown in Figure 28, Fach of the inputs to the rendezvous is generated if and 

only if 1 is to be initiated and both of them are generated only when all predecessors of I are completed. Thus, I is 

initiated as soon as all of its direct predecessors are completed. 

A general method is now presented that can be used to determine the combinations of signals that can be merged 

together to form the inputs to the rendezvous operation. Fach merge operation must have inputs from a set of 

operations, only one of which can be executed for a single initiation of the system, and one of which will be 

executed if the operation is to be executed. The combinations of conditions that can be merged together are 

determined by finding the directed cut sets of the portion of the control graph that is dominated by and reaches the 

node corresponding to operation [. A directed cut set of the control graph is a set of nodes whose deletion removes 

all paths from the initiation node to the termination node and such that none of the nodes is reachable from any 

other node in the cut set, as discussed in Section 2.6. The directed cut sets for the control graph of the example of 

Figure 27 are shown in Figure 29. The operations represented by different nodes in a cut set an just the operations 

whose outputs can be merged together to form an input signal for the rendezvous operation, since the operations 

represented by exactly one of the nodes in the cut set will be executed each time I is to be executed. Since there are 

numerous cut sets the completion signals of the direct predecessors can be merged in a number of different 
combinations. 

A cut set table which is similar to a prime implicanl table47 can be used to select the combinations of merge unit 

inputs to be used. The table will have a row for each possible merge unit (cut set of the control graph) and a column 

for each direct predecessor. The standard techniques which have been developed for prime implicanl tables47' 48 

can be applied to the cut set table, such as identifying essential lerms. to select a set of rows that cover all of the 

columns. One merge is then required for each row of the cut set table that is selected. Figure 30 shows the cut set 

table to be used with the cut sets shown in Figure 29. The fifth row is essential to cover the last column and row 3 

covers the remaining columns. The M-R network corresponding to this covering of the cut set table is shown in 

Figure 28. There is no direct predecessor of operation I corresponding to node C of the control graph but the 

required completion signal could be obtained from the decision output that reaches node C if required. Thus an M-R 

network can always be synthesized to generate the initiation signal for an operation when the operation dominates 
its direct predecessors. 
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The MR networks that are synthesized are similar to two-level or-and switching networks. In some cases more 

economical networks may be synthesized by using more than two levels as described in Miller49, or by considering 

the requirements for several operations simultaneously and using techniques that have been developed for the 

synthesis of multiple output switching networks47, 49. 

3.3.3 Direct Predecessors That Are Not Subordinate To Their Successor 

Finally, consider the case where, J, a predecessor of I, is not subordinate to I. This means that J will be executed 

for some cases where I is not. Since J is a predecessor of I there must be a path from J to I in the sequence graph and 

since I does not dominate J there must be some path, from J to the termination node, that does not reach I. Then 

there must be at least one decision in the sequence graph that is reached by J, that has an output thai reaches and is 

subordinate to I, and that has an output that does not reach 1. Find one such decision, D. that does not reach any 

other decision having these characteristics. D must be a predecessor of I. Add a wait operation with a decision inpul 

from each output of D. Then consider the signal input to the wail operation to be the input to an operation that has 

J as a direct predecessor and that has the same dominance relation as decision D. The output signal(s) from the wait 

operation that correspond to the decision output(s) that is (are) subordinate to I, will be generated only after J and 

D are completed and only if I is to be executed, therefore, they can be used as inputs to the M-R network for I. 

They can be treated as completion signals from operations that are direct predecessors of operation I and that have 

dominance relations equal to those of the corresponding decision outputs. Thus, completion signals from direct 

predecessors that are not subordinate to their successor can be split in this manner into signals that are exclusive if 

and subordinate to their successor. Then the methods described in Section 3.3.2 can be used to synthesi/e the M-R 

network to initiate the operation. 

The signal inputs to any wait operations that have been added must be synthesized. They will be subject to the 

same possibilities as the inputs to the operations for which the wait operations were added. However, there will be 

one less decision between the wait operation input and its direct predecessor than there was between the original 

operation and the direct predecessor. The process of adding wait operations may be repeated a number of times for 

one direct predecessor of the original operation but only a finite number need be added since there can only be a 

finite number of decisions between operations I and J. Figure 31 shows an example where three wait operations 

must be used to split the completion signal from operation J into parts that are exclusive of an4 subordinate to 

operation I. In this case the three wait operations could be combined into a single four-output wail operation as 

shown in Figure 32. This possibility will not be considered further, however, since the wait operation outputs that 

are eliminated by this network may be required by other operations and since testing for its occurrence would 

complicate the method for splitting the completion signals from the predecessors. A scan of the complete system. 

after the initiation networks for all operations have been synthesized, might be used to check foi cases where wail 

operations can be combined. 

3.3.4 Conditional Direct Predecessors 

One problem thai arises when using the methods discussed in the preceding sections is illustrated in Figure 33. 

Operation 5 depends on operation 2 but this is not shown explicitly in the basic precedence graph since it is implied 
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by the dependence of operation 5 on operation 4 and of operation 4 on operation 2. Figure 34 shows the control 

network which would be synthesized using the above techniques. This network has several laulls. Hrsl, the wait 

operation has an unused output which could still be active after initiation of the PT operation. Second, if the 

decision bypasses operation 4, then operation 5 can be initialed before operation 2 is completed, and the completion 

signal for the entire network may be generated before operation 2 is completed. These problems arise because the 

execution of operation 4 depends on the outcome ol decision 3. 

In the previous discussions we have assumed that an operation, I, may be initiated when all of its direct 

predecessors are completed. Since the direct predecessors of I require the execution of all other predecessors of I to 

be completed before they are initialed, the execution of all predecessors of I should be completed when the 

completion signals from the direct predecessors of 1 are generated. The problem which occurs in the example of 

Figure 33 is that for one outcome of decision 3, operation 4. which is the direct predecessor of operation 5, is not 

executed. In this case operation 2 is a ctrnditional direct predecessor of operation 5. Thai is, operation 2 is an 

indirect predecessor of opreration !>, but for one of the decision otucomes operation 2 is not a predecessor of any 

executed predecessor of 5. Operation 2 must be considered a direct predecessor of operation S for the decision 

outcome which bypasses operation 4. In general a conditional direct predecessor of an operation, I, is an indirect 

predecessor which for some conditions or combinations of decision outcomes is not a predecessor of an executed 

predecessor of operation I. Conditional direct predecessors can be eliminated by modifying and making additions to 

the precedence relation to take account of ihe wait operations. In the example of Figures 33 and 34 the wait 

operation is added when the initiation signal for operation 4 is synthesized. This wait operation can be considered as 

two additional operations in the process, one for each of Ihe wail operation outcomes. These operations are labeled 

Wj . and W^ , and added to the direct precedence graph as shown in Figure 35. They have as predecessors decision 

3 and operaf'on 2 which supply the input signals for the wail operation. Their successors are operation 4, for which 

the wail operation is added, and the successors of operation 4. The direct successor of W is operation 4 but 

operation 5 is the direct successor of W^ 2 since W, docs not reach operation 4. Thus, to its predecessors the wait 

operation is treated as a single operation while to its successors it is treated as a separate operation for each of its 

outputs. With this interpretation of the wail operation, the direct predecessors of each operation arc all dominated 

by the operation after all required wait operations have beeh added. Using Ihe precedence graph of Figure 35 the 

error-free concurrent process shown in Figure 36 is synlhesi/ed. 

The following rules arc used to modify Ihe precedence 'elation when a wail operation. W., is added because a 

direct predecessor,.I, of operation I is not dominated by I. 

I.Operation J, the decision supplying Ihe decision inputs, and all of their predecessors are 

made predecessors of W.. Also, if any predecessors of W. are wail operation outcomes 

then any other outcomes from the same wait  operation  that  reach W. arc made 

predecessors of W. also. 

2.1 and its successors are made successors ol each outcome of W that can reach Ihem. 
i 

These changes can easily be made to the complete precedence relation but only lh;,.,c addilional members of the 

precedence relation that are not implied by other members can be added to the basic precedence relation. In fact, it 

may be necessary to delete some of Ihe origirral members of the basic precedence relation when Ihe members due to 



49- 
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FIGURE 36.    ERROR-FREB CONCURRENT PROCESS FOR THE EXAMPLE OF FIGURE 33 
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a new wait operation are added. In order to determine the basic precedence relation with an added wail operation 

we can add all members of the complete precedence relation that include the wail operation to the basic precedence 

relation, caliiiii; tiiis the augmented precedence relation, and then delete any implied precedence relations. 

Determination and deletion of the implied relations when a single operation is added or when several operations 

which cannot be predecessors of each other are added is much simpler than the general case described in Section 

2.2.2 since no member of the relation can be implied by more than two other members. Thus all implied relations 

that are in the augmented precedence matrix can be found by merely multiplying the augmentated matrix by itself. 

The result of multiplying an augmented precedence matrix by itself is shown below where P represents the original 

precedence matrix. 

P   j B 

C  l D 

P   '   B 
_ _!  

C   !   D 

p P + B     C l    P    B + 
I 
l    B    D 

_  A _  _ _ 

c P + D    (' {    P    B + 

_ 
1    D    D 

The portion of the augmented precedence matrix labeled D must be zero since there can be no member of the 

precedence relation between two outcomes of the same wait operation. Therefore all of the terms involving D can be 

dropped to give the following matrix. 

P + B 

C     P I   C • B 

Also since there are no members of P that are implied by two other members of P it is not necessary to calculate P 

P and since D is zero it is not necessary to calculate C   B. Thus the following matrix specifies all of the members of 

the augmented precedence relation which must be deleted in order to make it a basic precedence matrix. 

B • C      |    P     B 

The following theorem shows that all predecessors of each operation will be completed before the operation is 

initiated. 

Theorem 2:    Adding all wait operation outcomes to the precedence relation insures that no opeiation 

is executed until all of its predecessors are completed. 

Proof:    Let I be executed for a particular initiation of the process and let J be any predecessor of 

I that is also executed. If J is a direci prcdei essor of I then J must be completed before 

operation 1 is initiated. If J is not a direct predecessor of I it must be the predccessoi of 
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some direct predecessor, K, of I. We will show that there is a chain of operations I, K , 

Kn_ ,,■•-, Kj J where Kn is an executed direct predecessor of I, J is a direct predecessor 

of Kj, and K.   .  is an executed direct predecessor of K. for i = 2, 3,. . . n. 

Let Q be any operation that is a predecessor of I and that has J as a direct predecessor. 

There must be one such operation unless J is a direct predecessor of I. Q is either a wait 

operation outcome or not. If it is not a wait operation outcome then it must be executed 

since its direct predecessor is executed. If Q is a wait operation outcome then the wail 

operation must be executed and one of its outcomes must be executed. The executed 

outcome must be able to reach operation I, since otherwise, I would not be executed. 

Since the executed wait operation outcome can reach 1 and I has one outcome of »he wait 

operation as a predecessor the executed outcome must be a predecessor of I. Thus, there 

must be an executed operation that is a predecessor of I and that has J as a direct 

predecessor. We can call this operation K, and if K, is not a direct predecessor of I we 

can repeat the above argument to find an executed operation, K2, that is a predecessor of 

I and that has Kj as a direct predecessor. Since there are only a finite number of 

operations in the process, an operation, Kn, must eventually be found that is a direct 

predecessor of operation I. Then since each of the Ki operations is executed and is 

executed only after its direct predecessors are completed, operation I must be initiated 

only after operation J is completed. Since operation J is any arbitrary predecessor of i the 

proof is complete. 

The addition of the wait operations to the precedence relation in the manner described above is not necessary to 

insure an error-free process as Figure 37 shows. This is an alternative to the one in Figure 36 and allows operations 2 

and 5 to be executed concurrently if operation 4 is not executed. Executing operations 2 and 5 concurrently imy 

result in sequencing errors but this cannot be determined from the precedence relation since we consider the 

precedence relation to be transitive. Additional tests would be required to determine whether operations 2 and 5 can 

be executed concurrently without sequencing errors. Since attempting to identify these cases and allow the 

additional concurrent operation would complicate the methods described, we will not consider this possibility 
further. 

3.3.5 Proof That The Synthesized Network Is Error-Free 

Theorem 3: A concurrent process synthesized from a precedence relation and dominance relation of a 

loop-free sequential process by adding wait operations to make all direct predecessors of 

each operation subordinate to the operation and by using cut sets to synthesize the 

initiation signals for each operation is error-free. 

Proof: Each operation is initiated only after its direct predecessors a.c completed and by 

Theorem 2 this insures that all predecessors of the operation are completed before it is 

initiated. This, there can be no sequencing errors in the process. Every operation has a 



-S3- 

/ 
1 

1 

k 

w 

\ 

< ^^^ -rV 
$ 4 y 

FIGURE   37.      A   CONCURRENT   PROCESS   WHERE   AN   OPERATION   DEPENDS   ON 

ONE   BUT   NOT   ALL   OUTPUTS   OF   THE   WAIT   OPERATION 



■54- 

predecessor since the PI operation is a predecessor of every oilier operalion.Tlie use of 

cut sets insures that if a rendezvous operation receives an initiation signal on any input it 

will receive exactly one signal on all inputs and thai no merge operation can receive more 

than one initiation signal so there are no hazard or incomplete rendezvous errors. The 

completion signal from every operation in the process must be generated before the 

termination operation is initiated since it has all the operations of the process as 

predecessors, thus all operations are completed when the termination operation is 

executed. 

3.4 SUMMARY 

A summary of the steps used to synthesize a concurrent process from a sequential one, as described in this 

chapter, is given below. 

1. Determine the precedence relation, dominance relation and control graph for the process. 

2. Find an operation, I. whose direct predecessors have had their initiation signals 

synthesized or else whose only direct predecessor is the PI operation. 

3. If any direct predecessor of I is not dominated by I add a wait operation and update the 

precedence relation as described in Sections 3.3.3 and 3.3.4 and then return to step 2. If 

all direct predecessors of I are dominated by I go to step 4. 

4. If any direct predecessors of I have the same dominance relation, connect their outputs to 

a rendezvous operation and use the rendezvous output in place of the operation outputs. 

5. Find the cut sets for operation I and use a cut set table to pick the combinations of 

signals to be merged together. Rendezvous the output signals from each merge and use 

the rendezvous output as the initiation signal for I. 

6. If I is not the PT operation return to step 2. 
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4. PROCESSES CONTAINING LOOPS 

In a loop-free process no operation can be executed more than once for a single initiation of the process. In terms 

of the connectivity graph, a loop-free process is one in which liiere is no chain of arcs from a node thai reaches the 

node again, or the main diagonal of the reachability matrix is all zeroes. Processes containing loops are processes in 

Which some operations may be executed more than once for a single initiation of the process. An example of a 

process containing a loop is shown in Figure I. This process calculates the product of the contents of register B and 

the contents of the right half of double length register A and leaves the result in register A. Operation X is a decision 

which determines whether operations 4 to 8 will be repeated. 

Consider a sequence graph that represents a loop-free process. If the addition of an arc from node I to node .1 

would introduce a loop into the process. Hie arc is called a feedback arc. The loop corresponding to the feedback arc- 

is the set of nodes that are in the maximally strongly connected subgraph34 formed by the addition of the feedback 

arc. Node J is called the loop entry node (Lb node) of the loop and node I is called the loop exit node (LX node). If 

any node in the loop, except J, has an arc directed to it from a node outside the loop, the node is called a secondary 

entry node. Similarly, a node other than node I that has an arc directed from it to a node outside the loop is called a 

secondary exit node. If two loops have one or more nodes in common but all nodes of one loop arc not contained in 

the other loop, they are called interscctm loops. If all nodes of one loop are contained in another loop Ihey are 

called nested loops and if two loops have no nodes in common they are called disjoint loops. 

The feedback arcs can be determined by calculating M.S.C. subgraphs as described in Section 2.3 and each 

feedback arc can be identified with two nodes designated as the loop initiation node {U node) and loop termination 

node (LT node) as shown in Figures 38 and 39. These nodes are added to the graph and differ from the LB and LX 

nodes in that they do not represent operations of the original process. Consider the sequential execution of Hie 

process shown in Figure 39. Fach time one of the LT nodes is reached the corresponding LI node will be executed 

next. A possible sequence of operation executions for this :ysleni would be: 

i. 2. 3, LT,, LI,, 2, 3, LT,. LI,. 2. 3.4. LT2. Uj, 3, LT,, LI,. 2, 3.4. 5 

We will call the execution of the operations from and including an initiation node to and including Hie following 

termination node the execution of a eyele of the system. Between the execution of the Nth and Mth cycles of a 

system exactly M N feedback arcs must be traversed and the first node of the first cycle must always be the PI node 

while the last node of the last cycle must always be the PT node. The sequence of operation executions given above 
contains the following five cycles: 

cycle I 1.2.3. LT, 

cycle 2 LI,.2.3.LT, 

cycle 3 LI,, 2. 3.4, LT., 

cycle 4 LI2.3.LT, 

cycle 5 LI,. 2, 3.4. 5 

 iin'Mhiintif""'-- 
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Since an operation may be executed more llian once we must distinguish between different executions of the same 

operation. In the above example operation 3 is executed five times, once for each cycle. A particular execution of 

operation 3 can be identified by specifying the cycle on which it occurs. 

The following section discusses several different types of concurrent operation that are possible in systems 

containing loops and the next three sections discuss dominance relations, execution relations, and cut sets in 

processes containing loops. Sections 4.5. 4.6. and 4.7 discuss methods for synthesizing concurrent processes from 
sequential processes containing loops. 

4.1 CONCURRENT OPERATIONS IN PROCESSES CONTAINING LOOPS 

Concurrent execution of the operations of a process can be separated into three categories. The ones chosen, 

although somewhat arbitrary, are convenient because they correspond closely to the types of concurrent execution 

allowed by the synthesis methods to be presented. In the previous example, concurrent execution of operations 2 

and 3 in the same cycle (for example, cycle 1) would be type A concurrency. 

Type B concurrency is concurrent execution of two operations which are in different cycles but where the 

operation which would be executed first in the sequential execution of the process can reach the other operation 

even with all feedback arcs deleted, in the preceding example, execution ..f operation 2 of cycle I concurrently with 

operation 4 of cycle 3 would represent type B concurrency while execution of operation 3 of cycle 3 concurrently 

with operation 4 of cycle 3 would represent type A concurrency. 

Finally, type C concurrently represents concurrent execution of two operations where the one that would be 

executed first in the sequential process can only reach the other operation over paths containing one or more 

feedback arcs. An example of type C concurrency would be the concurrent execution of operation 3 of cycle 2 with 
operation 2 of cycle 3. 

4.2 DOMINANCE RELATIONS IN PROCESSES CONTAINING LOOPS 

As in the loop-free case, we will require the dominance relation between each operation and its direct 

predecessors. The introduction of loops complicates the determination of dominance relations since some operations 

may be executed more than once for a single initiation of the process. Consider the example shown in Figure 40 

where operations 2, 3, and 4 may be executed on any number of cycles but operations I and 5 will be executed only 

once for each Initiation of the process. If operation 2 rs executed, operation I must be executed also, however, 

operation 2 may be executed many times while operation I is executed only once. In .his case orrly the execution of 

operation 2 or. the first cycle corresponds to the execution of operation 5. Therefore operation 1 does rrot dominate 

operation 2. and operation 5 does not dominate operation 4. The definition of dominance giver, in Section 2.5 thus 
must be revised to the following: 

Operation I dominates operation J if for every 

excculio.t of operation J. operation I must be 

execu-'ed also. 
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The dominance relation in Figure 40 was developed from the connectivity graph by inspection. It shows that the 

conditions for the execution of operations I and 5 and of 2 and 4 are equal and that operations 2 and 4 dominate all 

operations of the process. 

It any operation, J, is a direct predecessor of an operation, I, then the dominance relation between them must be 

determined, first consider the case where operation J can reach operation I only over paths which contain a 

feedback arc. Then if J is executed, I may or may not be executed since there will be a path from J to the PT node 

which does not include I. Therefore I will not dominate J. Operation J may dominate operation I bin this 

information is not required for the synthesis since the only information required between two operations is whether 

they dominate each other, and whether an operation dominates its p;edecessor. Both of these questions are 

answered by the fact that operation I cannot dominate operation J. 

Next consider the case where operation J can reach operation I over a path that contains no feedback arcs, In 

Section 2.5 the dominance relation for a loop-free process was found by deleting each node in succession and 

determining which remaining nodes could not reach the Nth node or be reached from the first node of the 

connectivity graph. Any node that could not reach the Nth node or be reached from the first node was dominated 

by the deleted node. In the example of figure 40, deletion of node I prevents any other operation from being 

reached by the first node. However, nod,. 1 does not dominate all of the other nodes because of the loop. Operations 

2, 3, and 4 can be initiated on a path other than the one starling at the PI node, specifically the one initiated by the 
feedback arc. 

For a system with loops the calculation of the dominance relation described in Section 2.5 must be revised 

slightly. Instead of merely testing whether un operation can reach the Nth iu.de and be reached by the first node, a 

test must also be made to determine whether the operation can reach itself. For if operation J can reach itself aller 

node I has been deleted, operation J can be executed any number of times without a corresponding execution of 

operation I. Thus operation I dominates J if deletion of operation I prevents node J either from reaching the Nth 

node or being reached from he first node, and prevents operation J from reach ng itself. Otherwise operation I does 
not dominate operation J. 

Theorem 4:    Node I dominates node J if and only if deletion of node I prevents node J either from 

reaching the Nth node or being reached by the first node of the connectivity graph and 
prevents J from reaching itself. 

Proof:    Consider any two operations, I and J, and assume that operation I can reach operation J 

over a path containing no feedb, ck arcs. The first time that J is executed it must be 

reached by a path from the first node that does not include operation J. The following 

executions of operation J require a path from operation J to itself. If deletion of 

operation I prevents operation J from being reached by itself or the PI operation, then 

operation I must be on every path from the PI operation to operation J and every path 

from operation J to itself. Then operation I must be executed every time that operation J 

is executed  and,  therefore, operation  I dominates operation J. Next assume  that 

operation I dominates operation J or that operation I must be executed every time that 

operation J is executed. Then operation I must be on every path from the PI operation to 
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operatlon J, since otherwise operation J could be executed without u corresponilinf! 

execution of operation I. Similarly, operation I must lie on every path from J that reaches 

J again or there could be an execution of operation J without a corresponding execution 

of operation I. Thus, when J follows I. operation I dominates operation J if. and onlj if, 

deletion of operation I removes all paths from the PI operation to J and from J to itself. 

Similar arguments can be used to show that when I follows J. operation I dominates 

operation J if and only if deletion of operation I eliminates all paths by which .1 can reach 

the PT operation or itself. 

4.3 PRECEDENCE RELATIONS IN PROCESSES CONTAINING LOOPS 

A precedence relation cannot be established directly for a graph containing loops since attempting to do so will 

usually result in an operation being required to precede itself. This is illusirated in the example of Figure 41. It 

operation 2 must be completed before operation 3 can be initiated and operation 3 must be completed before 

operation 2 is initiated the second time, the precedence diagram is as shown in Figure 41. which requires operation 2 

to be completed before it can be initiated. This occurs because the precedence relation makes no distinction between 

the first and second time that operation 2 is executed. One solution, suggested by Marimont50, is to "unwind" IIK 

loop as shown in Figure 42. Fach successive iteration of the loop is represented by repeating the nodes that form the 

loop. This transforms the cyclic graph into a loop-free graph and allows the precedence relations to be established If 

the number of cycles is known. 

Another method ' ' ' •,7. which will be used here, is to repeat one copy of the process and to establish the 

precedence relation between operations in the two copies. The repeated copy of the process is used to allow the 

establishment of the precedence relation between operations which can be reached only over paths containing 

feedback arcs. This is illustrated in Figure 43 where the nodes with unprimed numbers represent operations in one 

copy of the process and the nodes with primed numbers represent the operations from the preceding copy. 

Operation 2 follows the process initiation node or operation 3 of the preceding cycle, depending on whether 

operation 2 is being executed for the first time, In the example shown in Figure 44, operation 2 atid operation 3 of 

the first cycle may be executed concurrently, and operation h may be executed concurrently with all cycles of the 

process. Al 'i, operation 4 of one cycle may be executed concurrently with operation 3 of the preceding cycle. 

The method described in Section 2.4 for determining the decision precedence relation must he modified slightly 

when a process contains loops. In the connectivity graph of Figure 45 operations 5 and 6 do Hot require decision 

operation 4 to be completed before they are initiated while in Figure 46, operations 5 and 6 cannot be iniliatod until 

decision operation 4 is executed and the decision outcome is to execute operation S. Operations 5 and 6 mnsi follow 

decision operation 4 in Figure 46 because there is a path from the decision to the termination node that does nni 

pass through operations 5 and 6. Thus, until the outcome of decision 4 thai connects to operation 5 is laken.it is 

possible that operations 5 and 6 will not be executed. In the example of Figure 45 we exclude the possibility of the 

loop being executed an infinite number of times and therefore operations 5 and 6 must be executed eventually, 

regardless of the outcome of any particular execution of the decision. 

Consider any possible sequential execution of a process up to and including the execution of operation I. I nuisi 

depend on the closest decision, .1, to I that can reach the PT node without passing through I, since until that decision 
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is executed I nm be bypassed. The outcome of the decision thai reaches I musl be dominated In I since if that 

outcome is taken, I musl be executed because no path can bypass I and because decision .1 cannot be reached again 

before I is executed. Thus, if a decision has an outcome that is dominated by operation I and the decision can reach 

the IM node with I deleted, then operation I must have thai decision as a predecessor, I eannot have an> othei 

decision along the same path asa direct predccessoi since when decision J is completed, operation I can be initiated, 

without considering the outcome of an> other decisions, fhus J can have as dheel predecessors on!) those decisions 

«huh can reach the PI no.'e with I deleted and thai have an outcome thai is dominated In I. Conversely any 

decision Hun satisfies these two requirements will be a direct predccessoi of I foi some particulai execution 

sequence. Hie required information can easily be found and the decision F^dcnce relation determined when the 
dominance relation is calculated. 

II the loops in .1 process are nested, repeating one copy ol Iheprocess will allow the precedence relation between 

an> paii of operations to be determined36- ,7. However, if fhe loops are intersecting, as shown in the example of 

Figure 4-, the members ol the precedence relation between some operations nun not be found. In this example, 

assume that operation 3 is required to follow operation 6 when the operations are executed in the following order: 

■ - 6, 7, .4. S, :. 3,    .   This cannot be determined from the precedence relation found from a single repetition of 

the process since the path from operation 6 i. eralion 3 is not included. In fact, If any opmlion. I. can be 

reached from anothei operation. .1. only OUT a path which includes two o, more feedback arcs, the path will nol be 

shown explicit!) when onlj two .opus of the process are used. Additional copies of the process can be used to make 
;l np,e p:"l,s betWeen 0Perations ^iciU but with a large numbei of feedback arcs many copies of the process 
could be required. In orde, to require considerati. f onK one addil ,,1 cop> of the process, members will be 

added to the precedence relation to require thai operation .1 precede operation I when there is a path from I to I 

that contaim two or more feedback arcs and no path Hon, .hol thai contains onK one of the feedback arcs 

Consider a process with a path from an operation, J. to , pera  I, containing two feedback arcs such thai no 

Path ho,,. ,1 to 1 contains only one of the feedback arcs and lei the first feedback arc traversed be Hon, I \   to 1 I- 

and the second one from LX2  to LE3   Then the following conditions musl be satisfied In tb.  feedback free 

o.: nectivity graph where I -M indicates thai I reaches K and l-K indicates thai I does not reach K 

II.I-I.X, 

2)LE|—LX2 

3)LE2-H 

411,1,-H 

>».lltH.\, 

The firs, three conditions are necessary fo, the path from .1 to I to CMS,. The fourth condition must be true o, the 
following path, containing only the first feedback arc would exist: 

-I..      II,.II,,.      I 

S,""l;'rlV " the l,,," 0"K " is ,",, 58ti8fied •' P«th from will exist thai contains only .he second feedbacl 
:irc. 
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The foUowing three conditions can be d.-nved from conditions 1 through 5 and the fact that each LK node must 

reach the corresponding LX node. 

6)LX,-H£3 

«ILXJT^LXJ 

Condition 6 musi ne true, for otherwise condition I would imply that J-*LE2 and therefore that J-*LX2 in 

contradiction to condition 5. Conditions 7 and 8 must be true for if either one is not true there is a path from J to 1 

that includes only one of the feedback arcs. 

Thus, in any case where an operation, J, can reach an operation, I, over a path containing two feedback arcs but 

not over a path which does not contain both feedback arcs, conditions 2, 6, 7, and 8 must be satisfied. Several 

examples are shown in Figure 48. In every case operation I will have LX2 as a predecessor since operation I cannot 

be executed until the decision outcome specifies that the feedback arc is to be taken. If operation J is made a 

predecessor of LX2 then I cannot be executed until J is completed. This can be accomplished by adding a member 

to the precedence relation from J to LX . In general, we can add a precedence relation from any operation, K, to 

each LX node that K can reach only over a feedback arc and whose corresponding LE node operation K cannot 

reach o\er that feedback arc. This will insure the existance of a precedence relation between any operation and 

another operation which can reach it only over a path containing two feedback arcs. Therefore, two copies of the 

process will be sufficient to express al! members of the direct precedence relation. In the example of Figure 47 this 

will require operation 6 to be completed before operation 5 of the following cycle is initiated. This reduces the 

possibilities for concurrent operation since operation 6 of one cycle and operation S of a following cycle cannot be 

executed concurrently even if they are independent, but it simplifies the concurrent process synthesis and the 

representation of the precedence relation. 

4.4 CUT SETS IN PROCESSES CONTAINING LOOPS 

As in the loop-free case, cut sets of the control graph will be used to determine which completion signals from the 

direct predecessors of an operation, I, can be merged together. A cut set must consist of a set of nodes of the control 

graph such that one and only one node of the set will be in each path from the initiation node to operation I or from 

operation I to itself. A cut set for an operation, I, is thus defined as a set of nodes of the control graph satisfying the 

following four conditions: 

1. Each node can reach I over a feedback free path. 

2. Each node is dominated by I. 

3. No member of a cut set can reach any other member over a path that does not include I. 

4. If any node is added to the set then one of the first three conditions will be violated. 
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FIGURE 48.  TWO EXAMPLES OF PROCESSES WHERE OPERATION I CAN REACH 
OPERATION I ONLY OVER A PATH CONTAINING TWO FEEDBACK ARCS 
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Consider the exumple i)t'a control graph shown in Figure 4'). All nodes which may be members of the cut sets for 

I must satisfy conditions I and 2 and these nodes are drawn with a heavier circle. The cut sets are: 

(5,4, 14}. (5,4. 13, 15}, {5. 10, l(>, 15}, K 10, 15}. 

Clearly every node that reaches I and is dominated by 1 must be in some cut set for 1. Now we must prove that 

any path from the initiation node to I or from I to itself must pass through a member of each cut set for I. 

Theorem 5: Kvery path in the control graph from the initiation node to I or from I to itself must pass 

through exactly one node of each cut set. 

Proof: No path can pass through more than one node of any cut set since if it did , one node of 

the cut set would be able to reach another node of the cut set, in contradiction to the 

rules for forming cut sets. Next we must show that at least one node from each cut sei 

will be on every path. Consider the sequential execution of any path in the control graph 

reaching I and let it be composed of nodes Nj, N,, NL , .. N, N ... N     I in that 

order. Let N. be the last node that reaches any nwmber of a cut set, Z = {/ . /. 

/, ... A }. Let N. be the first node that can be reached by a member of the cut set. Since 

a member of the cut set can reach N. and since N can reach a member of the cut sei N 

must precede ^ or a member of the cut set would be able to reach some other member. 

Furthermore, since N. must have at least two extant arcs, there must be at least one node, 

N. ,, between N, and N, of the control graph. If node N. , is dominated by I then Z is 

not a cut set because N. l could be added to it without violating any of the restrictions. 

Thus if N. , is dominated by I, a member of the cut set Z must lie on the path reaching 

I. 

If I does not dominate N. , then N. , must be able to reach the PT node or itself, 

with node 1 deleted. Node N. , cannot reach the termination node with I deleted, since 

if so N., and thus a member of the cut set could reach the termination node with 1 

deleted. Then N. , must be able to reach itself and therefore N. must be able to reach 
Nj- r Lct 'Vn bc "1C carlicsl «ode that N. can reach. Node N. n must come after N. 

since, if not, a member of the cut set could reach some other member. Also, as before, 

there must be a node N. g_ , between N. and N. g. If N. g_ , is dominated by I then Z 

is not a cut set. If node N. g , is not dominated by I then it must be able to reach the 

PT node or itself with node I deleted. If it could reach the PT node the member of the 

cut set reaching N could reach the PT node also, and Z would not be a cut set  If N    „ 
J—x— 1 

cannot reach the PT node it must be able to reach itself, but then N       could reach 
Nj-ß_i alld therefore N. could reach N.   ^   , m contradiction to the assumption thai 

node N^g Was the earliest node that node N. could reach. Thus, there must be a member 

of each cut set of I on every path to node I from itself or from the PI node. 
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FIGURE 44   A CONTROL GRAPH 
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4.5    SYNTHESIS OF PROCESSES WITH TYPE A CONCURRENCY 

A simple method for treating processes with loops is to add additional members to the precedence relation that 

will eliminate any concurrency between cycles. That is, we will require all operations in one cycle to be completed 

before any operations in the following cycle are initiated. When the precedence relation is calculated, a single copy 

of the process is used, and members are added to the precedence relation to require every operation which reaches 

an IT node to precede it and to require every operation which can be reached by an LI node to follow it. A decision 

and merge are added to the process as shown in Figure 50, with an output for each initiation node and an input for 

each termination node, respectively. The decision represents the possibility of initiating the process by the process 

initiation node or by one of the loop initiation nodes. These additions transform the process into a loop-free process. 

The dominance relation and precedence relation for the process can be determined as discussed in Section 2.5 since 

the modified graph is loop-free. 

After the precedence relation and dominance relation are determined a concurrent process is synthesized as in the 

loop-free case, except that the added decision and merge operation are omitted. The output signal from each LT 

operation is then connected to the input of the corresponding LI operation to complete the process. Since every 

operation that can reach an LT node is a predecessor of it, the LT operation cannot be executed until every 

operation in the cycle of the process which it terminates is completed. Also, no operations in a succeeding cycle can 

be initiated until the loop initiation node that starts that cycle is completed. Thus, all operations in one cycle of the 

process are executed before any operations in the following cycle are initialed. The execution of the complete 

process can be considered to be a series of executions of a loop-free process, with possible concurrent execution of 

operations within each execution of the loop-free process. There is, however, no possibility of concurrent execution 

of operations in different cycles. 

4.5.1 Example 

Figures 51 to 54 show an application of this method to the process for multiplying two 12-bit numbers that is 

shown in Figure I. The multiplier is in register B and tb- multiplicand is originally in AR, the right half of double 

length register A. Register C is used as a counter to record the number of cycles completed. 

Figure 51 shows the connectivity graph, precedence graph, and dominance matrix for the process, with the 

feedback arc replaced by LI and LT nodes. The How chart for the proces, synthesized from these relations is shown 

in Figure 52. The operations of incrementing and testing the counter are performed concurrently with the 

operations to test the multiplier, add the multiplicand, and shift the partial product. Also, the initializing operations 

of clearing registers C and AL are performed concurrently with some other operations in the first cycle. 

Several changes can be made to reduce the amount of concurrent operation permitted, and thereby reduce the 

number of control operations required. The execution of operations 2 and 3 with operations in the first cycle of the 

loop is called loop entrance concurrency and can be eliminated if operations 2 and 3 are required to be completed 

before any operations within the loop are initiated, thereby eliminating the need for the wait operation that follows 

decision operation 4. This will reduce the lime required for each cycle of the process since there will be fewer 

control operations in the loop, but will eliminate the concurrent execution of operations 2 and 3 witli other 
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FIGURE   50.     A  CONNECTIVITY  GRAPH  WITH   ADDED  DECISION   AND 
MERGE   OPERATION 
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operations of the first cycle. Whether the overall result will be an increase or decrease in the (utal execution time 

| depends on the number of cycles that will he executed and the ratio of time saved in each cycle of the process to the 
■ additional time required lor initialization of the first cycle. 

To determine the control network for the process with no entrance concurrency, an additional node. \. can be 

I added t0 the P^dence graph and connectivity graph as shown In Figure 53, Every operation of the loop is required 

to follow the added node and every operation outside the loop which is a predecessor of an operation within the 

loop is made a predecessor of the added node. Figure 53 also shows the How chart for the concurrent process 

synthesized with the added operation. Comparison of Figures 52 and 53 shows that the delay associated with one 

wait operation has been eliminated from the execution of each cycle. 

I Another step which can he taken to reduce the control network complexity is to make every operation in the 

loop precede decision 8, thereby eliminating concurrent execution of operations with the loop exit decision. This 

will eliminate the need for the wait operation connected to the output of decision 8, but will increase the operating 

lime since decision 8 will not be executed concurrently with any other operations. In this case the increase m 

operating time will be slight since the time required for the decision is small. In a similar situation the decision might 

I he a more complex operation which  required considerable  time  to complete, and in that case the increase in 

operating lime would be much greater. The precedence graph, with all operations required to he completed betöre 

I operation 8, and the corresponding control How chart are shown in Figure 54, Table I gives a comparison of the 

operating limes and module requirements for the macromodular implementation of the different configurations. For 

comparison the times and module requirements are also given for the sequential system of Figure I and for a system 

I W'1'1 al1 operations completed before decision 8 but with entrance concurrency. The times assumed for the various 

operations are listed in Table 2. The calculations lor total times assume that the addition (operation 5) is performed 
for half of the cycles executed, 

| Several interesting observations can  be made from the table. First, significant operating time savings can be 

;• -hieved by allowing concurrent operation. If a is equal to 200ns, one of the concurrent systems requires only 64% 

1 (,l ,I|C ,ilnc '''•■quired for the completely sequential system. Second, although more equipment is required for the 

system with concurrenl operations, the number of multiplications per second per module can be increased by using 

concurrenl operations in this example. Finally, the system with the most concurrent operation docs not have the 

p shortest operating lime. The system with entrance concurrency is slower than the one without this concurrency 

because the additional control operations required increase the execution time slightly for each cycle of the process, 

while speeding up only the first cycle. I 
I 
I 

4 6 SYNTHESIS OF PROCESSES WITH TYPE B CONCURRENCY 
■ 

The method developed in the preceding section is effective for some processes but may severely restrict the 

concurrenl execution of operations in processes like ihe example shown in Figure 55. Since the method of Section 

4.5 requires all operations in one cycle to be completed before any operations in Ihe following cycle can bo initialed, 

Ihe only possible concurrenl execution of operations in the two loops would occur on their only common cycle, Ihe 

last cycle on which loop 1 is executed and the first cycle on which loop 2 is executed. 

In order to allow concurrent execution of operations in different cycles we will add precedence relations from the 

LI nodes to all nodes that can be reached by the LI node and cannot be reached by the corresponding LX node and 
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FIGURE   53.      THE   EXAMPLE   OF   FIGURE   52   WITHOUT   LOOP   ENTRANCE 
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GRAPH 

FIGURE   54.      EXAMPLE   OF   FIGURE   52   WITH   ALL   OPERATIONS   PRECtEDING   OPERATION   8 



s "B _2 
H g 3 
Ü U -2 — <U 9. IS) i 

■s. 
3 

It -J 

2 a. £ 

1? 
o- 

% 

I C1 

111 
H    S    Si 

£ « _ r i — 

I   I- 

l   a   IT  » ü    oi   ^   y: 
d 

-t 

d 

i-    S 

Ml      B 
^J      —      c 1   -5   I n 

1/-. 
IT; 

r1 

| 1 
+ + + 

1/-, 

•t 
i 

3 

5 

EH >, SB O M 

T3 = £ 2 O 
■ o £ « o U 

B " ■5 
■3 

(2 

H LL < a. 

i ,i r i 

r0, ^ 
+ + 

f i r i 

7, 

>> 
in 

— ■ 
C; .2 
ja t« 

G u >, u i*. D O >. 11 >. 
§ ■ 

u r3 
U i a 

s i i a 
71 

1 ÜJ 
I 
3 '3 c 

-Li 
5 '5 

bü 3 
a I 

X c c CT* « s B s o ta s o o V S o z o /^ 8 u Z U 93 

O 
S 

4/ i c 

o 
i- 

I 
H 
II 

a * 

1 

I 

i 

i 

I 



i 
I 
I 
I 
I 
I 
I 

-74- 

TABLE 2 

HXECUTION TIME K)R MACROMODULE OPERATIONS 

Operation 

Decision 

Merge 

Branch 

Rendezvous 

Wail 

Time 

100 ns 

20 ns 

15 ns 

20 ns 

20 ns From the lime (lie last 

of the two initiation 

Signals is received 

Add, Shift. Etc. a ns 
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HCURb   55.      A   CONNtCTIVITY   GRAPH   WITH   TWO   LOOPS 
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to each LT node from operations that can reach it and cannot reach the corresponding Lh node. These precedence 

relations will insure that if any operation, J, can reach another operation, I, only over a patli that contains a 

feedback arc, that operation J will be completed before operation I is initiated. If operation J can reach operation I 

over a path that does not contain a feedback arc then llie precedence graph will show any required precedence 

relations. When the precedence relation and dominance relation are determined the How chart for an equivalent 

concurrent process can be synthesized as follows: 

1. Determine the dominance relation as described in Section 4.2. 

2. Determine the precedence relation for a single copy of the process requiring each operation to be a 

predecessor of any LT node it reaches if it does not reach the corresponding Lli node and requiring each Li 

node to be a predecessor of any node not reached by the corresponding LX node. 

3. Select an operation, I, other than an LI or the PI operation, whose direct predecessors all have either had 

their M   R networks synthesized or else are LI or PI nodes. 

4. If any direct predecessor, K, of I is not subordinate to I, find the closest decision to K that can be reached 

by K, that reaches I, and that has an output that is dominated by I. Add a wait operation that receives its 

decision inputs from the decision and make K a predecessor of the wait operation and the wait operation a 

predecessor of operation I. Update the direct precedence relation as described in Section 3.3.4 and return 

to step 3. 

5. If any direct predecessors of I have the same dominance relation, connect their outputs to the inputs of a 

rendezvous operation and use the rendezvous output in place of the operation outputs. 

6. Determine tile cut sets for I and use a cut set table to choose a group of cut sets that cover all of the 

predecessors of I and synthesize the corresponding M   R network. 

7. If all operations have not had their M   R networks synthesized return to step 3, 

X.   Connect the loops by combining each LT node with the corresponding LI node. 

Unfortunately, the author has not been able to prove that a process synthesized as described above will be 

error-free, however, no counter-examples have been found. Figure 56 shows a connectivity graph, a precedence 

relation and the concurrent process that would be synthesized from them. The two loops of tin- process can be 

executed independently and type B concurrency is allowed since operations in any cycle of the second loop may be 

executed before the execution of the first loop is completed. 

4.7 SYNTHESSS OF PROCESSES WITH TYPE C CONCURRENCY 

The methods developed in the preceding sections are effective for some systems but do not allow any concurrent 

operation between operations in successive cycles of the same loop. In order to consider concurrent operations 

between successive cycles of a loop the precedence relation between operations in two copies of the process must be 

determined as discussed in Section 4.2. 

Figure 57 shows an example of a system with a single loop and the corresponding precedence and connectivity 

graphs including a repeated copy of the loop. When the initiation network for each operation is synthesized, the 
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primed nodes are considered to represent distinct operations although they actually represent the same operations as 

the unprimed nodes for a preceding cycle. Initiation networks will be required only for the unprimed nodes since 
they include all operations of the system. 

The initiation networks which would be synthesized for the operations by application of the methods discussed 

in Chapter 3 are shown in Figure 58. Operation 2 has three direct predecessors, the Pi operation and operations 3 ' 

and 5  from the preceding cycle. Operation 2 dominates operation PI and the output of 5 that reaches operation 2 

but it does not dominate operation 3', A wait operation is added whose decision outputs come from 5 and whose 

signal input has operation 3 'as a predecessor. The wait operation output corresponding to the decision outcome that 

reaches operation 2 is dominated by operation 2 and depends on the completion of operations 5 and 3 ' This signal 

and the one from the PI node form a cut set for operation 2 that includes all predecessors of operation 2. Since this 

is the only cut set for operation 2, these signals must be merged together as shown in Figure 58 to form the 

Wtiation network for operation 2. Next the initiation network for the signal input to the wait operation is 

determined and it consists of the completion signal from operation 2. The remaining initiation networks are 

synthesized in a similar manner and are shown in Figure 58. Figure 59 shows the combination of all of these 

initiation networks with branch operations added where the output from an operation is required by more than one 
tollowing operation. 

if the time required for operations 4 and 5 is longer than that required for operations 2 and 3 the system will 

operate satisfactorily. However, if operations 4 and 5 require less time than operations 2 and 3, there may be several 

signals applied to input C of the wait operation before a signal is applied to input A 

The problem occurs because input C of the wait operation may receive a signal from the second evele of the 

process be.ore input A receives a signal from the first cycle. The error would ho eliminated if the wait operation 

could store each input signal to B and C until the corresponding signal was received by input A. However since the 

number of cycles to be executed and the relat.ve speeds of the operations are no. known, the number of input 

signals that the wait operation would be required to store may be arbitrarily large. 

The error can also be eliminated by making operation 5 depend on the completion signal from the wait operation 

•hat corresponds to input C as shown in Figure 60. In this case only one signal can be received by the wait operation 

at input C before a signal is received at input A, and the wait operation completion signal generated 

Other types of errors can also occur as Figure 61 shows. If the execution of operation 2 is slow enough the right 

input to the rendezvous at the input to operation 3 will receive two input signals before the left input of the 

rendezvous receives any signals. In this case the input signal to the rendezvous for a given cycle can be generated 

before the completion signal has been generated for the preceding cycle and a hazard exists. There are several 

changes that can be made to eliminate the error, one of which is shown in Figure 62. The error is eliminated by 

msurmg that the rendezvous input signal for any cycle depends on the rendezvous completion signal from the 
preceding cycle. 

In the following section a proof is presented to show that If each signal is s.-lf-dependent (the Initiation of the 

signal on any cycle depends on the completion of the signal from all preceding cycles) the process that is svnthes.zed 
will be free of implementation errors. 
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FIGURE   59.     COMPLETE  CONCURRENT   FLOW  CHART   FOR   THE 

EXAMPLE  OF   FIGURE   57 
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4.7.1 Self-Dependent Signals 

In this section we will show thut the requirement for all signals to be sell-dependent (the initiation of each signal 

depends on the completion of thai signal from all preceding cycles) in conjunction with the previous loquiremenls 

that an operation must donunate all of its direct predecessors and that cut sets arc used to determine combinations 

of signals that are merged together, is necessary and sufficient to guarantee a concurrent process thai is tree of 

implementation errors. The specific types of implementation errors considered are the incomplete rendezvous and 

hazard as discuss .-d in Chapter 3. 

Theorem 6; The requirement that all sigruls of a process be self-dependent is both a necessary 

condition, and in conjunction with the requirements on synthesis of MR networks, a 

sufficient condition for a synthesized concurrent process to be free of implementation 

errors. 

Proof: To show the necessary part consider any operation, X, that is not self-dependent. X 

cannot depend on the completion signal of operation X from every preceding cycle or it 

would be self-dependent. Then operation X may receive an initiation signal before it 

generates a completion signal for some preceding cycle and this represents a hazard. Thus, 

if any operation in a process is not self-dependent, a hazard exists in the process. 

To show that the requirement is sufficient, consider any process in which no operation 

can receive an input signal for a particular cycle until its execution is completed for all 

preceding cycles. That is, nn every cycle except the first, an operation cannot be initiated 

until it has been completed on all preceding cycles, or if it is not executed on a preceding 

cycle, until everything that its execution in the preceding cycles would depend on, has 

been completed. Figure 63 shows a typical operation, I, and the control network used to 

generate the initiation signal for I. The inputs to the merge operations may come from 

operations in the same cycle of the process as I or from operations in preceding cycles but 

all of the operations must be dominated by I. 

Each input to one of the merge operation depends on the completion of the merge 

operation on all preceding executions of that merge operation. Since the only place the 

completion of the merge operation can be tested is the output of operation I, operation I 

must be completed or else not executed on every preceding cycle before any input signal 

for the merge operation can be generated for the current cycle. 

Consider the first execution of operation I. Each merge operation in the MR network 

will receive exactly one input corresponding to that execution of I since exactly one 

member of each of I's cut sets must be executed for each execution of operation I. The 

merge operations cannot receive any additional signals until operation I is completed and 

therefore are free of hazard errors for the first execution of operation I. The rendezvous 

will receive one initiation signal on each of its inputs and cannot receive any further 
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initiatiüii signals until its execution is complete and the execution of operation I is 

complete. Therefore the rendezvous is free of incomplete rendezvous and hazard errors. 

Operation I is also free of hazards since it cannot receive a second initiation signal until its 

execution is completed. Thus operation I and its M R network must be free of 

implementation errors the first time that they are executed. 

Next, consider the execution of operation I on cycle M when all preceding executions 

have been error-free. Before any merge operation can receive an input signal 

corresponding to the execution of I on cycle M, the execution of I must be completed on 

all preceding cycles, and since these preceding executions arc error-free no merge 

operations or rendezvous inputs can be active. As before, each merge operation must 

receive one input signal atid can receive no additional signals until operation I is 

completed so the M R network will be free of hazard and incomplete rendezvous errors. 

Thus there will be no hazard or incomplete rendezvous errors for operation I and its M R 

network on the first execution of I or any execution of I that follows an error-free 

execution of I. The same proof can be extended slightly to account for the additional 

inputs and used to show that there are no hazard or incomplete rendezvous errors in any 

wait operation or its MR network. 

Next, consider a rendezvous operation that is used to combine two or more signals from 

direct predecessors of operation I that have the same dominance relation. If either of the 

direct predecessors is executed the other one must be executed also and neither can be 

executed twice before the completion signal from ?he rendezvous is generated since both 

of the direct predecessors must depend on the completion of operation I which depends 

on the rendezvous completion. Thus there can be no incomplete rendezvous or hazard 

errors in the rendezvous operation. 

The only other operations in the system are branch operations but there can be no hazard 

in a branch operation unless there is also a hazard in the operation from which the branch 

operation receives its input. Thus there can be no hazard or incomplete rendezvous errors 

in the synthesized process if all operations are self-dependent. 

4.7.2 Synthesis of Processes with Self-Dependent Signals 

The preceding section has shown that all signals must be self-dependent if the synthesized process is to be 

error-free. Next, methods must be established to insure thai all signals in any synthesized process arc self-dependent. 

The following sections present several methods which were investigated to assure that the control network 

synthesized from a precedence and connectivity relation would contain only self-dependent signals. 

4.7.2.1 Reciprocal Precedence Relations 

By a reciprocal precedence relation it is meant that if an operation, J, is a predecessor of an operation, I, then I 

must be a predecessor of J whenever J follows I. Figure 64 shows examples of po, lions of several precedence graphs. 
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the added members of the precedence relation used to make the precedence relation reciprocal, and the final 

precedence relation with all implied members deleted. The rei|uirement that the precedence relation be reciprocal is 

sufficient to insure that each input signal to an operation depends on the complelion of thai operation for all 

preceding initiations. Unfortunately, the reciprocal precedence relation also causes ihe «tecutkni of all operations 

within a loop to be completely sequential as is shown below. 

Every operation in a loop must have the loop exit decision from the previmi' execulion of llie loop as a 

predecessor. Then if the precedence relation is to be reciprocal the loop exi( decision musl haveeveiy opeiadon in 

the loop as a predecessor. Then each operation in one execution of Ihe loop has eveiy aptnÜi i pfttitiing 

execution of the loop as a predecessor. Then each operation has every operalion 1:1 iis cycle ol ihe loop ihal 

precedes ii as a predecessor also, and the operations musl be executed sei|uenlially. 

4.7.2.2 Reciprocal Basic Precedence Relations 

The requirement that all precedence relations be symmetric, as discussed in Ine last section, is siirficienl to 

provide an error-free network but also eliminates concurrent operalion within loops. Less reslnclive requirements 

are needed that will still assure an error-free network. One possibility, which will be investigated in this section, is to 

require only the basic precedence relation to be reciprocal. That is, if an operalion, J, is a direct predecessor of an 

operation, I, then there must be a member of the precedence relation (not necessarily the basic precedence relation) 

between I and J whenever I follows J. Since every operation that provides a signal for Ihe M R network of an 

operation, I, is a direct predecessor of I, this will require all preceding executions of I to be completed before any of 

Fs direct predecessors can be executed. Thus, all signals will be self-dependent and Ihe synthesized process will be 

free of implementation errors. The required members of the precedence relation can always be added if there is a 

path from I to J that contains fewer than two feedback aics. If there is no path containing fewer than two feedback 

arcs then the precedence relation as developed in Section A3 will require I to be executed before J. 

Following is a summary of the steps used to synthesize processes with type C concurrency. 

1. Determine the dominance relation as described in Section 4.2. 

2. Determine the precedence relation for two copies of Ihe system as described in Section 4.3. 

3. Select an operation, I, other than the PI operation, each of whose direct predecessors has either had its 

M-R network synthesized, is in the preceding copy of the process, or is the PI node. 

4. if any direct predecessor, K, of I is not subordinate to !, find Ihe closest decision to K Ihal can be reached 

by K, that reaches I, and that has an output lhat is dominated by I. Add a wait operalion Ihal receives its 

decision inputs from the decision and make K a predecessor of the wail operation and the wait operation a 

predecessor of operation I. Update the direct precedence relation as described in Section 3.3.4, including 

any relations required to make the basic precedence relation reciprocal and return to step 3. 

5. If any direct predecessors of I have Ihe same dominance relation, connect their outputs to the Inputs "fa 

rendezvous operation and use the rendezvous output in place of the operation outputs. 

6. Determine the cut sets for I and use a cut set table to choose a group of cut sets thai cover all of the 

predecessors of I and synthesize the correspondir   M   R network. 

7. If operation I is not the PT operalion, return to s.-p 3. 
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4.7.2.3    Example 

As an example of the application of this method consider the sequential flow chart shown in Figure 65. 

Operations 2, 3, and 4 refer to storage locations A to D and operation 5 decrements a count and tests it to determine 

whether the loop should be repeated or not. Figure 66 shows the basic precedence relation for two copies of the 

process. All of the members of the precedence relation are determined as described in Section 4.2 except the one 

from operation 2 to operation 5 which is included to make the basic precedence relation reciprocal. Since operation 

2 does not dominate operation 3'a wait operation must be added and it will receive its decision inputs from 

operation 5. The wait operation will have two outcomes and the updated precedence relation is shown in Figure 66 

where the node representing the wait operation is drawn to emphasize the two outcomes. Another wait operation 

must be added since operation 3 does not dominate operation 4 'and the complete precedence relation is shown in 

Figure 66. The flow chart of the synthesized concurrent process is shown in Figure 67 and it shows that operation 2 

of a given cycle may be initiated before operation 4 of the preceding cycle has been completed. The flow chart can 

be simplified slightly and some of the merge, branch, and rendezvous operations eliminated by observing that some 

signals are required as inputs to several operations. For example, the left output from W2 could be merged with the 

output signal from operation I and then branched to provide signals for the rendezvous associated with operations 3 

and 5, thereby saving one merge and one branch operation. 

The concurrent process in Figure 67 includes several unnecessary restrictions. For example, operation 5 of a given 

cycle must follow operation 2 of the same cycle due to the member of the precedence relation that was added to 

make the precedence relation reciprocal. It is obviously not necessary that operation 5 follow operation 2 of the 

same cycle. In order to allow the synthesis of a process in which operations 2 and 5 can be executed concurrently a 

dummy operation, X, can be added directly before operation 2. X is made a predecessor of operation 2 and every 

operation that was originally a predecessor of operation 2 is made a predecessor of operation X. The basic 

precedence relation is shown in Figure 68 with the added member required to make it reciprocal. Note that with the 

addition of operation X, operations 2 and 5 can be executed concurrently. 

Another place where the members added to the precedence relation to make it reciprocal reduce the possibilities 

of concurrent operation is shown in Figure 66. The members of the precedence relation from Wl and W2' to 

operation 5 prevent operation 5 from being executed until operations 3 and 4 of the preceding cycle are completed. 

Actually, there is nothing in the original process that restricts operation 5 from being executed any number of times 

before operations 2, 3, and 4 are completed the first time. In order to allow operation 5 to be executed before 

operation 3 of the preceding cycle is completed a pair of wait operations can be used in place of Wl as is shown in 

Figure 69. Two wait operations, W1A and W1B, are added to the precedence relation as shown in Figure 69 to 

generate a signal that depends on the completion of operation 3 from the preceding cycle and that is subordinate to 

operation 2. The direct precedence relation can then be made reciprocal without requiring operation 5 to depend on 

the completion of operation 3 from the preceding cycle. By replacing W2 with a pair of wait operations in the same 

manner the dependence of operation 5 on operation 4 of the preceding cycle can also be eliminated. The execution 

of operation 5 on cycle N will then depe id on the completion of operations 3 and 4 on cycle N- 2. 

By using enough wait operations operation 5 may be allowed to proceed any number of cycles ahead of 

operations 3 and 4 but the number of wait operations and complexity of the synthesized process increase 

significantly. The wait operations allow the execution of operation 5 to proceed ahead of the other operations by 

storing the outcome of the decision. This is an inefficient method of storing this information and a system of 
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FIGURE  67.     A  CONCURRENT   FLOW  CHART   FOR  THE 

EXAMPLE OF  FIGURE 65 



o 

.99- 

fIGURi;  68.     PRECEDENCE GRAPH   FOR  THL  KXAMPU-  OP 

FIGURE  65  WITH  DUMMY  OPERATION   X  ADDED 



-!0ü- 

A   PORTION   OF   THE   FLOW CHART 

PRECEDENCE  GRAPH 

FIGURE  69,     AN  EXAMPLE  OF  THE  USE OF  A  PAIR OF  WAIT OPERATIONS TO 

ALLOW   ADDITIONAL  CONCURRENCY 



■101- 

counters or data queues as discussed by Kaip and Miller and by Reiter20'2' would be more efficient. However, iliey 

have discussed only methods for analysis of their systems and not for synthesis. 

4.8 SUMMARY 

Three methods have been presented for synthesizing concurrent processes from sequential processes containing 

loops. I he lirsl method, whici, consists of treating the execution of each cycle of the process independently, is the 

easiest to apply bu' does not allow any cycie-to-cycie concurrency. The second method allows some cycle-to-cyele 

concurrency while the third method, which consists of forming a reciprocal precedence relation is the most complex 

but may produce a taster system since additional cycle-to-cycle concurrency is possible. Which of the three methods 

is best lor a given process will depend on the particular characteristics of the process including the execution times 

of the individual operations. 

—WMB 



-102- 

5. CONCLUSION 

Methods have bee., developed which can be used to analyze a sequential process and to then synthesize an 

error-free process that performs the same calculations bu ess time hy performing some operations concurrently. 

Precedence relations, as developed by Bernstein26 and Fisher" are reviewed in Sections 2.4 and 43 and are used to 

describe^any required order of execution of the operations comprising the process. The dominance relation of 

Prosser 0 is extended to include processes with loops and is used to represent the relation between the execution of 

operations. Wail operation, are added to the original process until every direct predecessor of an operation Is 

subordinate to the operation and an M R network is then used to allow initiation of the operation as soon as all of 

the operation's predecessors are completed. The precedence relation is used to prevent sequencing errors by insuring 

that any required order of execution is observed while the dominance relation and directed cut sets are used to 

prevent implementation errors. The M R networks synthesized are analogous, although not isomorphic. to or-and 

switching networks and some of the techniques developed tor synthesis of multilevel and multioutpul or-and 

switching networks .night be applied to simplify the M R networks. Several methods were developed, varying in 
complexity and effectiveness, for treating processes with loops. 

The synthesis methods described are by no means exhaustive and other possibilities exist winch may allow 

Simpler processes to be synthesized by reducing the possibilities for concurrent operation. For example in some 

cases a number of wait operations may be required which significantly complicate a concurrent process while 

allowing a very small or perhaps no reduction in the execution time of the process. If an operation I has an 

operataon. J, as a direct predecessor bu, I does not dominate J the use of wait operations can be avoided by 

modifying the synthesis procedure slightly. Instead of adding a wait operation, operation J can be made a 

predecessor of the decision from winch the wait operation would have received its decision inputs. Operation I will 

have the decision as a predecessor and the decision output will be dominated by 1. This will eliminate the 

requirement tor the wait operation and will prevent operation .1 from being executed concurrently with the decision 

or w.th any operation that has the decision as a predecessor. Thus the synthesized process will be simpler and will 
allow less concurrent execution of the operations. 

The only other effort to synthesize concurrent processes known to the author is that of Bmgham et */.*'•" 

Their method consists of maintaining the precedence matrix and several binary vectors in memory and using these to 

control the sequencing of the operations. Each time an operation is completed its corresponding bit is set in a vector 

specifying all completed operations. The precedence graph is then checked to find all operations whose predecessors 

have been completed and these are added to a vector representing operations ready for execution. Whenever a 

decis-on  is executed all operations that cannot be reached by the selected outcome are marked as having been 

completed so that their successors may be initiated. Although i, can probably be modified to include processes with 

loops, the method as presented does not include processes with loops. Some method would be required to 

rem.tiahze or else to provide additional copies of the status vectors when a loop is repeated. The use of status vectors 

and the precedence matrix during the process execution does no, seem practical In a hardware process such as might 

be constructed from macmmodules but it could be implemented in a programmed system 

Additional work is required to allow effective use of concurrent operations. A difficult bu, necessary requirement 

is «he ability to determine where concurrent execution of operations is worth the added complexity and where |, is 

not. Tins obviously requires estimates of the execution tnne of the individual operations and also requ.es knowledge 
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of the number of times that each operation is to be executed if the times to execute sections of the process are to be 

estimated. This problem has been studied by Estrin and Martin5 ■' and by Krai54 but is extremely difficult to analyze 

since branching probabilities may be data dependent. Another problem is the assignment of operations to the 

hardware or processors that will be used to execute them. As the example in Figure 10 shows, the use of additional 

storage locations or reassignment of storage locations may affect the degree of concurrent execution possible. 
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